Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem A Mater ; 11(10): 5320-5327, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36911163

ABSTRACT

Two ultramicroporous 2D and 3D iron-based Metal-Organic Frameworks (MOFs) have been obtained by solvothermal synthesis using different ratios and concentrations of precursors. Their reduced pore space decorated with pendant pyridine from tangling isonicotinic ligands enables the combination of size-exclusion kinetic gas separation, due to their small pores, with thermodynamic separation, resulting from the interaction of the linker with CO2 molecules. This combined separation results in efficient materials for dynamic breakthrough gas separation with virtually infinite CO2/N2 selectivity in a wide operando range and with complete renewability at room temperature and ambient pressure.

2.
ACS Appl Mater Interfaces ; 15(4): 5309-5316, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36691894

ABSTRACT

We report that the carborane-based metal-organic framework (MOF) mCB-MOF-1 can achieve high adsorptive selectivity for CO2:N2 mixtures. This hydrophobic MOF presenting open metal sites shows high CO2 adsorption capacity and remarkable selectivity values that are maintained even under extremely humid conditions. The comparison of mCB-MOF-1' with MOF-74(Ni) demonstrates the superior performance of the former under challenging moisture operation conditions.

3.
Chem Sci ; 13(3): 842-847, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35173949

ABSTRACT

Different mixed-ligand Zeolitic Imidazolate Frameworks (ZIFs) with sodalite topology, i.e. isoreticular to ZIF-8, unachievable by conventional synthetic routes, have been prepared using a solvent-free methodology. In particular, the versatility of this method is demonstrated with three different metal centres (Zn, Co and Fe) and binary combinations of three different ligands (2-methylimidazole, 2-ethylimidazole and 2-methylbenzimidazole). One combination of ligands, 2-ethylimidazole and 2-methylbenzimidazole, results in the formation of SOD frameworks for the three metal centres despite this topology not being obtained for the individual ligands. Theoretical calculations confirm that this topology is the lowest in energy upon ligand mixing.

4.
Chem Sci ; 14(1): 179-185, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36605746

ABSTRACT

Palladium-based metal-organic frameworks (Pd-MOFs) are an emerging class of heterogeneous catalysts extremely challenging to achieve due to the facile leaching of palladium and its tendency to be reduced. Herein, Pd(ii) was successfully incorporated in the framework of a MOF denoted as MUV-22 using a solvent assisted reaction. This stable MOF, with square-octahedron (soc) topology as MIL-127, and a porosity of 710 m2 g-1, is highly active, selective, and recyclable for the Suzuki-Miyaura allylation of aryl and alkyl boronates as exemplified with the coupling between cinnamyl bromide and Me-Bpin, a typically reluctant reagent in cross-coupling reactions.

5.
Chemistry ; 27(14): 4653-4659, 2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33337561

ABSTRACT

Carbon capture and storage with porous materials is one of the most promising technologies to minimize CO2 release into the atmosphere. Here, we report a family of compartmentalized coordination polymers (CCPs) capable of capturing gas molecules in a selective manner based on two novel tetrazole-based ligands. Crystal structures have been modelled theoretically under the Density Functional Theory (DFT) revealing the presence of discrete voids of 380 Å3 . Single gas adsorption isotherms of N2 , CH4 and CO2 have been measured, obtaining a loading capacity of 0.6, 1.7 and 2.2 molecules/void at 10 bar and at 298 K for the best performing material. Moreover, they present excellent selectivity and regenerability for CO2 in mixtures with CH4 and N2 in comparison with other reported materials, as evidenced by dynamic breakthrough gas experiments. These frameworks are therefore great candidates for separation of gas mixtures in the chemical engineering industry.

6.
Angew Chem Int Ed Engl ; 58(43): 15518-15525, 2019 10 21.
Article in English | MEDLINE | ID: mdl-31452313

ABSTRACT

Xe is only produced by cryogenic distillation of air, and its availability is limited by the extremely low abundance. Therefore, Xe recovery after usage is the only way to guarantee sufficient supply and broad application. Herein we demonstrate DD3R zeolite as a benchmark membrane material for CO2 /Xe separation. The CO2 permeance after an optimized membrane synthesis is one order magnitude higher than for conventional membranes and is less susceptible to water vapour. The overall membrane performance is dominated by diffusivity selectivity of CO2 over Xe in DD3R zeolite membranes, whereby rigidity of the zeolite structure plays a key role. For relevant anaesthetic composition (<5 % CO2 ) and condition (humid), CO2 permeance and CO2 /Xe selectivity stabilized at 2.0×10-8  mol m-2 s-1 Pa-1 and 67, respectively, during long-term operation (>320 h). This endows DD3R zeolite membranes great potential for on-stream CO2 removal from the Xe-based closed-circuit anesthesia system. The large cost reduction of up to 4 orders of magnitude by membrane Xe-recycling (>99+%) allows the use of the precious Xe as anaesthetics gas a viable general option in surgery.


Subject(s)
Anesthetics/chemistry , Xenon/chemistry , Zeolites/chemistry , Adsorption , Carbon Dioxide/chemistry , Carbon Dioxide/isolation & purification , Diffusion , Gases/chemistry , Water/chemistry , Xenon/isolation & purification
7.
Ind Eng Chem Res ; 58(1): 296-305, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30774191

ABSTRACT

Biobased 2-butanol offers high potential as biofuel, but its toxicity toward microbial hosts calls for efficient techniques to alleviate product inhibition in fermentation processes. Aiming at the selective recovery of 2-butanol, the feasibility of a process combining in situ vacuum stripping followed by vapor adsorption has been assessed using mimicked fermentation media. The experimental vacuum stripping of model solutions and corn stover hydrolysate closely aligned with mass transfer model predictions. However, the presence of lignocellulosic impurities affected 2-butanol recovery yields resulting from vapor condensation, which decreased from 96 wt % in model solutions to 40 wt % using hydrolysate. For the selective recovery of 2-butanol from a vapor mixture enriched in water and carbon dioxide, silicalite materials were the most efficient, particularly at low alcohol partial pressures. Integrating in situ vacuum stripping with vapor adsorption using HiSiv3000 proved useful to effectively concentrate 2-butanol above its azeotropic composition (>68 wt %), facilitating further product purification.

SELECTION OF CITATIONS
SEARCH DETAIL
...