Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(3 Pt 2): 036709, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22587211

ABSTRACT

The aim of this work is the description of the chain formation phenomena observed in colloidal suspensions of superparamagnetic nanoparticles under high magnetic fields. We introduce a methodology based on an on-the-fly coarse-grain (CG) model. Within this approach, the coarse-grain objects of the simulation and their dynamic behavior are not fixed a priori at the beginning of the simulation but rather redefined on the fly. The motion of the CG objects (single particles or aggregates) is described by an anisotropic diffusion model and the magnetic dipole-dipole interaction is replaced by an effective short-range interaction between CG objects. The methodology correctly reproduces previous results from detailed Langevin dynamics simulations of dispersions of superparamagnetic colloids under strong fields while requiring an amount of CPU time orders of magnitude smaller. This substantial improvement in the computational requirements allows the simulation of problems in which the relevant phenomena extend to time scales inaccessible with previous simulation techniques. A relevant example is the waiting time dependence of the relaxation time T(2) of water protons observed in magnetic resonance experiments containing dispersions of superparamagnetic colloids, which is correctly predicted by our simulations. Future applications may include other popular real-world applications of superparamagnetic colloids such as the magnetophoretic separation processes.


Subject(s)
Colloids/chemistry , Magnetic Fields , Models, Molecular , Diffusion , Reproducibility of Results , Time Factors
2.
J Phys Chem B ; 112(48): 15398-406, 2008 Dec 04.
Article in English | MEDLINE | ID: mdl-18989904

ABSTRACT

We present here a new model for the imidazolium-based ionic liquids (ILs) with the bis(trifluoromethylsulfonyl)imide anion [Tf(2)N](-) in the context of the soft-SAFT EoS. The model is used to predict the solubility of several compounds in these ILs, and results are compared to available experimental data. Since in the soft-SAFT EoS an associating site is used to represent a short-range and highly directional attractive force among molecules, we have used this feature to mimic the main interactions between the anion and the cation for the alkylimidazolium-[Tf(2)N] ILs. The members of the alkylimidazolium-[Tf(2)N] family are modeled as Lennard-Jones chains with three associating sites in each molecule (one "A" site and two "B" sites). An "A" site represents the nitrogen atom interactions with the cation, and a "B" site represents the delocalized charge due the oxygen molecules on the anion. Each type of associating site is identically defined, but only AB interactions between different IL molecules are allowed. Model parameters for the ionic liquids were estimated with experimental density data from different authors, following a similar approach taken in our previous work [Andreu and Vega, J. Phys. Chem. C 2007, 111, 16028]. The new set of parameters was used to study the solubility behavior of hydrogen, carbon dioxide, and xenon in these ILs over a wide range of temperature and pressure. It has been observed that no binary parameters are needed to correlate the solubility of hydrogen in [C(6)-mim][Tf(2)N] at different temperatures, and predictions up to 100 MPa are presented here. The model is able to correlate with very good agreement the experimental data for the systems [C(n)-mim][Tf(2)N] + CO(2) with only one temperature-independent mixture parameter, while two temperature-independent mixture parameters are needed to correlate the experimental solubility data for the systems IL + Xe, attaining an excellent agreement in a wide range of temperatures. The work presented here reinforces previous results, proving that a reasonable simple model for the IL within the framework of soft-SAFT is able to describe the physical absorption of different gases in ILs with good accuracy, in spite of the most complex nature of the anion, without the need of further parameters or terms. In addition, since these parameters do not depend on the particular conditions at which they were fitted, soft-SAFT is used then to analyze the solubility dependence of these gases in ILs, according to the anion nature and the alkyl chain length of the imidazolium cation by the use of the models developed within this approach.

SELECTION OF CITATIONS
SEARCH DETAIL
...