Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 14644, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918479

ABSTRACT

Viral glycoproteins mediate entry into host cells, thereby dictating host range and pathogenesis. In addition, they constitute the principal target of neutralizing antibody responses, making them important antigens in vaccine development. Recombinant vesicular stomatitis virus (VSV) encoding foreign glycoproteins can provide a convenient and safe surrogate system to interrogate the function, evolution, and antigenicity of viral glycoproteins from viruses that are difficult to manipulate or those requiring high biosafety level containment. However, the production of recombinant VSV can be technically challenging. In this work, we present an efficient and robust plasmid-based system for the production of recombinant VSV encoding foreign glycoproteins. We validate the system using glycoproteins from different viral families, including arenaviruses, coronaviruses, and hantaviruses, as well as highlight their utility for studying the effects of mutations on viral fitness. Overall, the methods described herein can facilitate the study of both native and recombinant VSV encoding foreign glycoproteins and can serve as the basis for the production of VSV-based vaccines.


Subject(s)
Glycoproteins , Plasmids , Plasmids/genetics , Glycoproteins/genetics , Glycoproteins/immunology , Animals , Humans , Vesiculovirus/genetics , Viral Proteins/genetics , Viral Proteins/immunology , HEK293 Cells
2.
PLoS Pathog ; 20(2): e1012021, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38377111

ABSTRACT

The interaction of viral surface components with cellular receptors and other entry factors determines key features of viral infection such as host range, tropism and virulence. Despite intensive research, our understanding of these interactions remains limited. Here, we report a systematic analysis of published work on mammalian virus receptors and attachment factors. We build a dataset twice the size of those available to date and specify the role of each factor in virus entry. We identify cellular proteins that are preferentially used as virus receptors, which tend to be plasma membrane proteins with a high propensity to interact with other proteins. Using machine learning, we assign cell surface proteins a score that predicts their ability to function as virus receptors. Our results also reveal common patterns of receptor usage among viruses and suggest that enveloped viruses tend to use a broader repertoire of alternative receptors than non-enveloped viruses, a feature that might confer them with higher interspecies transmissibility.


Subject(s)
Receptors, Cell Surface , Viruses , Animals , Receptors, Virus , Membrane Proteins , Machine Learning , Mammals
3.
Microbiol Spectr ; 11(3): e0492822, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37199659

ABSTRACT

Anelloviruses represent the major and most diverse component of the healthy human virome, referred to as the anellome. In this study, we determined the anellome of 50 blood donors, forming two sex- and age-matched groups. Anelloviruses were detected in 86% of the donors. The number of detected anelloviruses increased with age and was approximately twice as high in men as in women. A total of 349 complete or nearly complete genomes were classified as belonging to torque teno virus (TTV), torque teno mini virus (TTMV), and torque teno midi virus (TTMDV) anellovirus genera (197, 88, and 64 sequences, respectively). Most donors had intergenus (69.8%) or intragenus (72.1%) coinfections. Despite the limited number of sequences, intradonor recombination analysis showed 6 intragenus recombination events in ORF1. As thousands of anellovirus sequences have been described recently, we finally analyzed the global diversity of human anelloviruses. Species richness and diversity were close to saturation in each anellovirus genus. Recombination was found to be the main factor promoting diversity, although its effect was significantly lower in TTV than in TTMV and TTMDV. Overall, our results suggest that differences in diversity between genera may be caused by variations in the relative contribution of recombination. IMPORTANCE Anelloviruses are the most common human infectious viruses and are considered essentially harmless. Compared to other human viruses, they are characterized by enormous diversity, and recombination is suggested to play an important role in their diversification and evolution. Here, by analyzing the composition of the plasma anellome of 50 blood donors, we find that recombination is also a determinant of viral evolution at the intradonor level. On a larger scale, analysis of anellovirus sequences currently available in databases shows that their diversity is close to saturation and differs among the three human anellovirus genera and that recombination is the main factor explaining this intergenus variability. Global characterization of anellovirus diversity could provide clues about possible associations between certain virus variants and pathologies, as well as facilitate the implementation of unbiased PCR-based detection protocols, which may be relevant for using anelloviruses as endogenous markers of immune status.


Subject(s)
Anelloviridae , DNA Virus Infections , Torque teno virus , Male , Humans , Female , Anelloviridae/genetics , DNA Virus Infections/epidemiology , Torque teno virus/genetics , Demography , Recombination, Genetic , DNA, Viral
4.
Sci Adv ; 6(49)2020 12.
Article in English | MEDLINE | ID: mdl-33277258

ABSTRACT

The ability of viruses to infect their hosts depends on rapid dissemination following transmission. The notion that viral particles function as independent propagules has been challenged by recent observations suggesting that viral aggregates show enhanced infectivity and faster spread. However, these observations remain poorly understood. Here, we show that viral replication is a cooperative process, such that entry of multiple viral genome copies into the same cell disproportionately increases short-term viral progeny production. This cooperativity arises from the positive feedback established between replication templates and virus-encoded products involved in replication and should be a general feature of viruses. We develop a simple model that captures this effect, verify that cooperativity also emerges in more complex models for specific human viruses, validate our predictions experimentally using different mammalian viruses, and discuss the implications of cooperative replication for viral fitness.

5.
mBio ; 11(1)2020 01 07.
Article in English | MEDLINE | ID: mdl-31911487

ABSTRACT

A growing number of studies report that viruses can spread in groups in so-called collective infectious units. By increasing the cellular multiplicity of infection, collective dispersal may allow for social-like interactions, such as cooperation or cheating. Yet, little is known about how such interactions evolve. In previous work with vesicular stomatitis virus, we showed that virion aggregation accelerates early infection stages in most cell types, providing a short-term fitness benefit to the virus. Here, we examine the effects of virion aggregation over several infection cycles. Flow cytometry, deep sequencing, infectivity assays, reverse transcription-quantitative PCR, and electron microscopy revealed that virion aggregation rapidly promotes the emergence of defective interfering particles. Therefore, virion aggregation provides immediate fitness benefits to the virus but incurs fitness costs after a few viral generations. This suggests that an optimal strategy for the virus is to undergo virion aggregation only episodically, for instance, during interhost transmission.IMPORTANCE Recent insights have revealed that viruses use a highly diverse set of strategies to release multiple viral genomes into the same target cells, allowing the emergence of beneficial, but also detrimental, interactions among viruses inside infected cells. This has prompted interest among microbial ecologists and evolutionary biologists in studying how collective dispersal impacts the outcome of viral infections. Here, we have used vesicular stomatitis virus as a model system to study the evolutionary implications of collective dissemination mediated by viral aggregates, since this virus can spontaneously aggregate in the presence of saliva. We find that saliva-driven aggregation has a dual effect on viral fitness; whereas aggregation tends to increase infectivity in the very short term, virion aggregates are highly susceptible to invasion by noncooperative defective variants after a few viral generations.


Subject(s)
Biological Evolution , Defective Viruses/genetics , Defective Viruses/ultrastructure , Virion , Virus Diseases/virology , Virus Replication , Animals , Cell Line , Gene Expression , Genes, Reporter , Genetic Fitness , Genome, Viral , Humans , Vesiculovirus
6.
Curr Biol ; 28(20): 3212-3219.e4, 2018 10 22.
Article in English | MEDLINE | ID: mdl-30318351

ABSTRACT

In addition to the conventional release of free, individual virions, virus dispersal can involve multi-virion assemblies that collectively infect cells. However, the implications of collective infection for viral fitness remain largely unexplored. Using vesicular stomatitis virus, here, we compare the fitness of free versus saliva-aggregated viral particles. We find that aggregation has a positive effect on early progeny production, conferring a fitness advantage relative to equal numbers of free particles in most cell types. The advantage of aggregation resides, at least partially, in increasing the cellular multiplicity of infection. In mouse embryonic fibroblasts, the per capita, short-term viral progeny production peaked for a dose of ca. three infectious particles per cell. This reveals an Allee effect restricting early viral proliferation at the cellular level, which should select for dispersal in groups. We find that genetic complementation between deleterious mutants is probably not the mechanism underlying the fitness advantage of collective infection. Instead, this advantage is cell type dependent and correlates with cellular permissivity to the virus, as well as with the ability of host cells to mount an antiviral innate immune response.


Subject(s)
Saliva/virology , Selection, Genetic , Vesiculovirus/physiology , Virus Replication/physiology , A549 Cells , Animals , Chlorocebus aethiops , Female , Humans , Mice , Mice, Inbred C57BL , Vero Cells , Vesiculovirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...