Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38337248

ABSTRACT

In this study, four different plastic materials usually used in the agricultural sector (polystyrene film (PS), polyethylene terephthalate film (PET), low-density polyethylene film (LDPE) and linear low-density polyethylene film (LLDPE)) were subjected to different abiotic treatments, including photo-oxidation (ultraviolet and e-beam radiation) and thermochemical treatments, to enhance polymer degradation. The extensive use of these polymers leads to large amounts of plastic waste generation, including small plastic pieces, known as microplastics, which affect the quality of the agricultural environment, including soil fertility and quality. Therefore, polymer degradation strategies are needed to effectively reduce plastic waste to protect the agricultural sector. The degree of polymer degradation was assessed by the use of thermal and spectroscopic analyses, such as TGA and FTIR. In addition, efficiency, cost-benefits, and potential side-effects were also evaluated to propose the optimal degradation strategy to reduce plastic waste from the point of view of efficiency. The results obtained showed that the pre-treatments based on photo-oxidation (ultraviolet B and C and e-beam radiation) were more efficient and had a better cost-benefit for the degradation of the polymers studied in relation to the thermochemical treatments. Specifically, ultraviolet photo-oxidation worked well for PS and PET, requiring low energy and medium times. However, e-beam radiation was recommended for PE (LDPE and LLDPE) degradation, since high energy and long times were needed when ultraviolet energy was applied to this polymer. Furthermore, the overall efficiency of the plastic degradation of pre-treatments should be studied using a multicriteria approach, since FTIR assessments, in some cases, only consider oxidation processes on the plastic surface and do not show the potential integrity changes on the plastic probes.

2.
Sci Total Environ ; 805: 150330, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34818753

ABSTRACT

Composting is an advantageous and efficient process for recycling organic waste and producing organic fertilizers, and many kinds of microorganisms are involved in obtaining quality compost with suppressive activity against soil-borne pathogens. The aim of this work was to evaluate the main differences in the effects of three composting piles on the whole bacterial and fungal communities of baby-leaf lettuce crops and to determine the specific communities by high-throughput sequencing related to suppressiveness against the soil-borne plant pathogen Pythium irregulare- (P. irregulare). Compost pile A was composed of 47% vineyard pruning waste, 34% tomato waste and 19% leek waste; pile B was composed of 54% vineyard pruning waste and 46% tomato waste; and pile C was composed of 42% vineyard pruning waste, 25% tomato waste and 33% olive mill cake. The temperature and the chemical properties of the piles were monitored throughout the composting process. In addition, the potential suppressive capacity of the three composts (C_A, C_B and C_C) against P. irregulare in baby-leaf lettuce was assessed. We found that the bacterial community changed according to the composting phases and composting pile and was sensitive to chemical changes throughout the composting process. The fungal community, on the other hand, did not change between the composting piles and proved to be less influenced by chemical properties, but it did change, principally, according to the composting phases. All composts obtained were considered stable and mature, while compost C_C showed higher maturity than composts C_A and C_B. During composting, the three piles contained a greater relative abundance of Bacterioidetes, Proteobacterias and Actinobacterias related to the suppression of soil-borne pathogens such as Pythium irregulare. Composts C_A and C_B, however, showed higher suppressiveness against P. irregulare than compost C_C. Deeper study showed that this observed suppressiveness was favored by a higher abundance of genera that have been described as potential suppressive against P. irregulare, such as Aspergillus, Penicillium, Truepera and Luteimonas.


Subject(s)
Composting , Mycobiome , Crops, Agricultural , Fertilizers , Industrial Waste/analysis , Soil
3.
Waste Manag ; 120: 351-363, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33340817

ABSTRACT

Alternative materials with added-value functions, such as phytopathogen suppression and biostimulant and/or biofertilising activity, have been proposed as peat substitutes in growing media. The aim of this work was to evaluate the effect of 23 agro-industrial composts as components of growing media for baby-leaf lettuce transplant production and their activity against the plant pathogen Pythium irregulare. The composts were produced by mixing different starting feedstocks-tomato waste, leek waste, olive mill cake and vineyard pruning waste-with different additives (coffee, thyme, lavender and rockrose waste), which were incorporated at the beginning of the maturation phase. The results obtained indicated that the composts were mature enough to be used as growing media. The fresh weight of the lettuce plants grown with the different composts was significantly higher than in plants obtained with peat. Composts with the coffee additive produced higher lettuce fresh weight, while those with thyme yielded a lower fresh weight. Moreover, composts as components of growing media showed significantly higher P. irregulare suppressiveness than peat. The composts with additives produced lower lettuce fresh weight than composts without additives, but showed higher suppressiveness. Composts with additives showed opposite results depending on whether they were exposed to pathogens or not. Composts with additives showed opposite results according to pathogen pressure or not. Out of all the composts studied, the compost with tomato waste and leek waste as the initial feedstock, and lavender as an additive, showed the highest suppressive capacity. After lettuce harvesting, the growing media with composts showed significantly lower concentrations of P. irregulare than peat. Principal Component Analysis (PCA) revealed that the growing media with compost can be grouped together according to the additive type.


Subject(s)
Composting , Olea , Pythium , Soil , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...