Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 10(1): 374, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37291162

ABSTRACT

With the urgent need to implement the EU countries pledges and to monitor the effectiveness of Green Deal plan, Monitoring Reporting and Verification tools are needed to track how emissions are changing for all the sectors. Current official inventories only provide annual estimates of national CO2 emissions with a lag of 1+ year which do not capture the variations of emissions due to recent shocks including COVID lockdowns and economic rebounds, war in Ukraine. Here we present a near-real-time country-level dataset of daily fossil fuel and cement emissions from January 2019 through December 2021 for 27 EU countries and UK, which called Carbon Monitor Europe. The data are calculated separately for six sectors: power, industry, ground transportation, domestic aviation, international aviation and residential. Daily CO2 emissions are estimated from a large set of activity data compiled from different sources. The goal of this dataset is to improve the timeliness and temporal resolution of emissions for European countries, to inform the public and decision makers about current emissions changes in Europe.

2.
Sci Data ; 10(1): 155, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36991071

ABSTRACT

Anthropogenic emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) have made significant contributions to global warming since the pre-industrial period and are therefore targeted in international climate policy. There is substantial interest in tracking and apportioning national contributions to climate change and informing equitable commitments to decarbonisation. Here, we introduce a new dataset of national contributions to global warming caused by historical emissions of carbon dioxide, methane, and nitrous oxide during the years 1851-2021, which are consistent with the latest findings of the IPCC. We calculate the global mean surface temperature response to historical emissions of the three gases, including recent refinements which account for the short atmospheric lifetime of CH4. We report national contributions to global warming resulting from emissions of each gas, including a disaggregation to fossil and land use sectors. This dataset will be updated annually as national emissions datasets are updated.


Subject(s)
Climate Change , Carbon Dioxide/analysis , Methane , Nitrous Oxide/analysis
3.
Atmos Pollut Res ; 12(12): None, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34938143

ABSTRACT

With the international goals of the Paris Agreement and the growing number of time-bound national goals for emissions reductions, reliable estimates of CO2 emissions are becoming more and more important. In particular, reducing the time lag of these estimates and producing short-term projections are gaining importance as the remaining time until mitigation deadlines becomes shorter. The Global Carbon Project has been producing a current-year projection of global CO2 emissions since 2012, introducing a sub-projection for the European Union in 2018. The success of this EU projection has been variable, and in this article I explore how the projections in 2019 were made along with some of the reasons why the projections have high uncertainty and bias. About 84% of the total error in the projection of EU emissions in 2019 was because of a poor projection for coal consumption, which was a result of poor estimates of sub-annual observations, a misunderstanding of conflicting information, and poor assumptions applied to the remainder of the year. The correction of the errors identified here will go some way to improving future short-term projections of the European Union's CO2 emissions, paving the way for a low-maintenance, operational system.

4.
Sci Data ; 8(1): 2, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33414478

ABSTRACT

Quantification of CO2 fluxes at the Earth's surface is required to evaluate the causes and drivers of observed increases in atmospheric CO2 concentrations. Atmospheric inversion models disaggregate observed variations in atmospheric CO2 concentration to variability in CO2 emissions and sinks. They require prior constraints fossil CO2 emissions. Here we describe GCP-GridFED (version 2019.1), a gridded fossil emissions dataset that is consistent with the national CO2 emissions reported by the Global Carbon Project (GCP). GCP-GridFEDv2019.1 provides monthly fossil CO2 emissions estimates for the period 1959-2018 at a spatial resolution of 0.1°. Estimates are provided separately for oil, coal and natural gas, for mixed international bunker fuels, and for the calcination of limestone during cement production. GCP-GridFED also includes gridded estimates of O2 uptake based on oxidative ratios for oil, coal and natural gas. It will be updated annually and made available for atmospheric inversions contributing to GCP global carbon budget assessments, thus aligning the prior constraints on top-down fossil CO2 emissions with the bottom-up estimates compiled by the GCP.

5.
Article in English | MEDLINE | ID: mdl-30297462

ABSTRACT

In early 2016, we predicted that the annual rise in carbon dioxide concentration at Mauna Loa would be the largest on record. Our forecast used a statistical relationship between observed and forecast sea surface temperatures in the Niño 3.4 region and the annual CO2 rise. Here, we provide a formal verification of that forecast. The observed rise of 3.4 ppm relative to 2015 was within the forecast range of 3.15 ± 0.53 ppm, so the prediction was successful. A global terrestrial biosphere model supports the expectation that the El Niño weakened the tropical land carbon sink. We estimate that the El Niño contributed approximately 25% to the record rise in CO2, with 75% due to anthropogenic emissions. The 2015/2016 CO2 rise was greater than that following the previous large El Niño in 1997/1998, because anthropogenic emissions had increased. We had also correctly predicted that 2016 would be the first year with monthly mean CO2 above 400 ppm all year round. We now estimate that atmospheric CO2 at Mauna Loa would have remained above 400 ppm all year round in 2016 even if the El Niño had not occurred, contrary to our previous expectations based on a simple extrapolation of previous trends.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.


Subject(s)
Carbon Dioxide/analysis , Carbon Sequestration , El Nino-Southern Oscillation , Temperature , Atmosphere/analysis , Models, Theoretical
6.
Environ Sci Technol ; 52(22): 12958-12967, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30339021

ABSTRACT

Chinese provinces ultimately implement China's national climate policies. In the 2000s, there were unbalanced emission transfers (emissions produced in one region but consumed in other regions) between China's well- and less-developed regions, mainly related to demand in the well-developed eastern provinces. In the past decade, the plateau in China's exported emissions and changes in its industrial structure suggest that the features of the provincial emission transfers could have changed. We construct a Chinese provincial multiyear, multisector model (multi-regional input-output model) to investigate the structural changes in China's provincial emission transfers from 2002 to 2012. We find that from 2007 to 2012, the international-export-associated emission transfers driven by eastern provinces decreased by 17% after the 262% increase in 2002-07, while investment dominated 99% of the increase in emission transfers. At the sector level, emissions caused by construction in the east and west, and technology-intensive manufacturing in the center that largely related to investment were the major components of the increasing emission transfers in 2007-12, accounting for 23%, 21%, and 10% of the increase, respectively. Our findings indicate that attention should be given to committed emissions from investment and the interaction between non-uniform provincial climate policies and economic relationships between provinces.


Subject(s)
Industry , Investments , China , Climate , Commerce
SELECTION OF CITATIONS
SEARCH DETAIL
...