Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Type of study
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22273545

ABSTRACT

The B.1.1.529 (omicron) variant has rapidly supplanted most other SARS-CoV-2 variants. Using microfluidics-based antibody affinity profiling (MAAP), we have recently shown that current therapeutic monoclonal antibodies exhibit a drastic loss of affinity against omicron. Here, we have characterized affinity and IgG concentration in the plasma of 39 individuals with multiple trajectories of SARS-CoV-2 infection and/or vaccination as well as in 2 subjects without vaccination or infection. Antibody affinity in patient plasma samples was similar against the wild-type, delta, and omicron variants (KA ranges: 122{+/-}155, 159{+/-}148, 211{+/-}307 M-1, respectively), indicating a surprisingly broad and mature cross-clade immune response. We then determined the antibody iso- and subtypes against multiple SARS-CoV-2 spike domains and nucleoprotein. Postinfectious and vaccinated subjects showed different profiles, with IgG3 (p = 0.002) but not IgG1, IgG2 or IgG4 subtypes against the spike ectodomain being more prominent in the former group. Lastly, we found that the ELISA titers against the wildtype, delta, and omicron RBD variants correlated linearly with measured IgG concentrations (R=0.72) but not with affinity (R=0.29). These findings suggest that the wild-type and delta spike proteins induce a polyclonal immune response capable of binding the omicron spike with similar affinity. Changes in titers were primarily driven by antibody concentration, suggesting that B-cell expansion, rather than affinity maturation, dominated the response after infection or vaccination.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-478946

ABSTRACT

We assessed the affinities of the therapeutic monoclonal antibodies (mAbs) cilgavimab, tixagevimab, sotrovimab, casirivimab, and imdevimab to the receptor binding domain (RBD) of wild type, Delta, and Omicron spike. The Omicron RBD affinities of cilgavimab, tixagevimab, casirivimab, and imdevimab decreased by at least two orders of magnitude relative to their wild type equivalents, whereas sotrovimab binding was less severely impacted. These affinity reductions correlate with reduced antiviral activities of these antibodies, suggesting that simple affinity measurements can serve as an indicator for activity before challenging and time-consuming virus neutralization assays are performed. We also compared the properties of these antibodies to serological fingerprints (affinities and concentrations) of wild type RBD specific antibodies in 74 convalescent sera. The affinities of the therapeutic mAbs to wild type and Delta RBD were in the same range as the polyclonal response in the convalescent sera indicative of their high antiviral activities against these variants. However, for Omicron RBD, only sotrovimab retained affinities that were within the range of the polyclonal response, in agreement with its high activity against Omicron. Serological fingerprints thus provide important context to affinities and antiviral activity of mAb drugs and could guide the development of new therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL
...