Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21262241

ABSTRACT

BackgroundThe COVID-19 pandemic has led to an explosion of research publications spanning epidemiology, basic and clinical science. While a digital revolution has allowed for open access to large datasets enabling real-time tracking of the epidemic, detailed, locally-specific clinical data has been less readily accessible to a broad range of academic faculty and their trainees. This perpetuates the separation of the primary missions of clinically-focused and primary research faculty resulting in lost opportunities for improved understanding of the local epidemic; expansion of the scope of scholarship; limitation of the diversity of the research pool; lack of creation of initiatives for growth and dissemination of research skills needed for the training of the next generation of clinicians and faculty. ObjectivesCreate a common, easily accessible and up-to-date database that would promote access to local COVID-19 clinical data, thereby increasing efficiency, streamlining and democratizing the research enterprise. By providing a robust dataset, a broad range of researchers (faculty, trainees) and clinicians are encouraged to explore and collaborate on novel clinically relevant research questions. MethodsWe constructed a research platform called the Yale Department of Medicine COVID-19 Explorer and Repository (DOM-CovX), to house cleaned, highly granular, de-identified, continually-updated data from over 7,000 patients hospitalized with COVID-19 (1/2020-present) across the Yale New Haven Health System. This included a front-end user interface for simple data visualization of aggregate data and more detailed clinical datasets for researchers after a review board process. The goal is to promote access to local COVID-19 clinical data, thereby increasing efficiency, streamlining and democratizing the research enterprise. Expected OutcomesO_LIAccelerate generation of new knowledge and increase scholarly productivity with particular local relevance C_LIO_LIImprove the institutional academic climate by: O_LIBroadening research scope C_LIO_LIExpanding research capability to more diverse group of stakeholders including clinical and research-based faculty and trainees C_LIO_LIEnhancing interdepartmental collaborations C_LI C_LI ConclusionsThe DOM-CovX Data Explorer and Repository have great potential to increase academic productivity. By providing an accessible tool for simple data analysis and access to a consistently updated, standardized and large-scale dataset, it overcomes barriers for a wide variety of researchers. Beyond academic productivity, this innovative approach represents an opportunity to improve the institutional climate by fostering collaboration, diversity of scholarly pursuits and expanding medical education. It provides a novel approach that can be expanded to other diseases beyond COVID 19.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21259162

ABSTRACT

Wastewater based surveillance has gained prominence and come to the forefront as a leading indicator of forecasting COVID-19 infection dynamics owing to its cost-effectiveness and its ability to inform early public health interventions. A university campus could especially benefit from wastewater surveillance as they are characterized by largely asymptomatic populations and are potential hotspots for transmission that necessitate frequent diagnostic testing. In this study, we employed a large-scale GIS (Geographic information systems) enabled building-level wastewater monitoring system associated with the on-campus residences of 7614 individuals. Sixty-eight automated wastewater samplers were deployed to monitor 239 campus buildings with a focus on residential buildings. Time-weighted composite samples were collected on a daily basis and analyzed within the same day. Sample processing was streamlined significantly through automation, reducing the turnaround time by 20-fold and exceeding the scale of similar surveillance programs by 10 to 100-fold, thereby overcoming one of the biggest bottlenecks in wastewater surveillance. An automated wastewater notification system was developed to alert residents to a positive wastewater sample associated with their residence and to encourage uptake of campus-provided asymptomatic testing at no charge. This system, integrated with the rest of the "Return to Learn" program at UC San Diego-led to the early diagnosis of nearly 85% of all COVID-19 cases on campus. Covid-19 testing rates increased by 1.9-13X following wastewater notifications. Our study shows the potential for a robust, efficient wastewater surveillance system to greatly reduce infection risk as college campuses and other high-risk environments reopen. IMPORTANCEWastewater based epidemiology can be particularly valuable at University campuses where high-resolution spatial sampling in a well-controlled context could not only provide insight into what affects campus community as well as how those inferences can be extended to a broader city/county context. In the present study, a large-scale wastewater surveillance was successfully implemented on a large university campus enabling early detection of 85% of COVID-19 cases thereby averting potential outbreaks. The highly automated sample processing to reporting system enabled dramatically reduced the turnaround time to 5h (sample to result time) for 96 samples. Furthermore, miniaturization of the sample processing pipeline brought down the processing cost significantly ($13/sample). Taken together, these results show that such a system could greatly ameliorate long-term surveillance on such communities as they look to reopen.

SELECTION OF CITATIONS
SEARCH DETAIL
...