Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 5: 10869, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-26040924

ABSTRACT

The unavoidable occurrence of microdefects in silicon wafers increase the probability of catastrophic fracture of silicon-based devices, thus highlighting the need for a strengthening mechanism to minimize fractures resulting from defects. In this study, a novel mechanism for manufacturing silicon wafers was engineered based on nanoscale reinforcement through surface nanotexturing. Because of nanotexturing, different defect depths synthetically emulated as V-notches, demonstrated a bending strength enhancement by factors of 2.5, 3.2, and 6 for 2-, 7-, and 14-µm-deep V-notches, respectively. A very large increase in the number of fragments observed during silicon fracturing was also indicative of the strengthening effect. Nanotextures surrounding the V-notch reduced the stress concentration factor at the notch tip and saturated as the nanotexture depth approached 1.5 times the V-notch depth. The stress reduction at the V-notch tip measured by micro-Raman spectroscopy revealed that nanotextures reduced the effective depth of the defect. Therefore, the nanotextured samples were able to sustain a larger fracture force. The enhancement in Weibull modulus, along with an increase in bending strength in the nanotextured samples compared to polished single-crystal silicon samples, demonstrated the reliability of the strengthening method. These results suggest that this method may be suitable for industrial implementation.

2.
Biosens Bioelectron ; 55: 294-300, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24398124

ABSTRACT

In this study, we fabricate an ultra-sensitive hydrogen peroxide sensor by using horseradish peroxidase (HRP)-immobilized conducting polymer, polyaniline (PANI). With the proposed detection mechanism, hydrogen peroxide first oxidizes HRP, which then oxidizes polyaniline, thus resulting in decreased conductivity of the polyaniline thin film. The reduced HRP can be further oxidized by hydrogen peroxide and the cycle of the oxidation/reduction would continue until all hydrogen peroxide are reacted, leading to the high sensitivity of the sensor due to the signal contributed from all hydrogen peroxide molecule. The detection limit of this sensor is only 0.7 nM. The detectable concentration of H2O2 is from 0.7 nM to 1 µM. Beyond 1 µM, the sensor gradually saturates and some H2O2 remains, indicating the inhibition of HRP activity at high concentration of H2O2. There is no response to hydrogen peroxide once the PANI is standalone without HRP immobilized, showing the enzymatic reaction is required in the process of hydrogen peroxide detection. The simple process for the sensor fabrication allows the sensor to be cost-effective and disposable. This electronic hydrogen peroxide sensor is promising in applications for low concentration hydrogen peroxide detections, such as the reactive oxygen species (ROS) in oxidative stress studies.


Subject(s)
Aniline Compounds/chemistry , Biosensing Techniques/instrumentation , Conductometry/instrumentation , Electrodes , Horseradish Peroxidase/chemistry , Hydrogen Peroxide/analysis , Electric Conductivity , Enzymes, Immobilized/chemistry , Equipment Design , Equipment Failure Analysis , Hydrogen Peroxide/chemistry , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...