Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sleep Breath ; 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38085496

ABSTRACT

PURPOSE: To compare loop gain (LG) before and during pharmacological increases in cerebral blood flow (CBF) at high altitude (HA). Loop gain (LG) describes stability of a negative-feedback control system; defining the magnitude of response to a disturbance, such as hyperpnea to an apnea in periodic breathing (PB). "Controller-gain" sensitivity from afferent peripheral (PCR) and central-chemoreceptors (CCR) plays a key role in perpetuating PB. Changes in CBF may have a critical role via effects on central chemo-sensitivity during sleep. METHODS: Polysomnography (PSG) was performed on volunteers after administration of I.V. Acetazolamide (ACZ-10mg/kg) + Dobutamine (DOB-2-5 µg/kg/min) to increase CBF (via Duplex-ultrasound). Central sleep apnea (CSA) was measured from NREM sleep. The duty ratio (DR) was calculated as ventilatory duration (s) divided by cycle duration (s) (hyperpnea/hyperpnea + apnea), LG = 2π/(2πDR-sin2πDR). RESULTS: A total of 11 volunteers were studied. Compared to placebo-control, ACZ/DOB showed a significant increase in the DR (0.79 ± 0.21 vs 0.52 ± 0.03, P = 0.002) and reduction in LG (1.90 ± 0.23 vs 1.29 ± 0.35, P = 0.0004). ACZ/DOB increased cardiac output (CO) (8.19 ± 2.06 vs 6.58 ± 1.56L/min, P = 0.02) and CBF (718 ± 120 vs 526 ± 110ml/min, P < 0.001). There was no significant change in arterial blood gases, minute ventilation (VE), or hypoxic ventilatory response (HVR). However, there was a reduction of hypercapnic ventilatory response (HCVR) by 29% (5.9 ± 2.7 vs 4.2 ± 2.8 L/min, P = 0.1). CONCLUSION: Pharmacological elevation in CBF significantly reduced LG and severity of CSA. We speculate the effect was on HCVR "controller gain," rather than "plant gain," because PaCO2 and VE were unchanged. An effect via reduced circulation time is unlikely, as the respiratory-cycle length did not change.

2.
A A Pract ; 11(9): 253-257, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-29851693

ABSTRACT

Neuroendocrine tumors may rarely present after organ transplantation, including cardiac transplant. Treatment is surgical resection with careful perioperative management to optimize blood pressure and intravascular volume. We present the anesthetic management of a patient who was diagnosed with bilateral neuroendocrine tumors soon after heart-lung transplantation and underwent successful staged bilateral adrenalectomy.


Subject(s)
Adrenal Gland Neoplasms/surgery , Adrenalectomy , Anesthetics , Neuroendocrine Tumors/surgery , Female , Heart-Lung Transplantation , Humans , Middle Aged
3.
Respirology ; 17(5): 835-40, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22429599

ABSTRACT

BACKGROUND AND OBJECTIVE: Loop gain is an engineering term that predicts the stability of a feedback control system, such as the control of breathing. Based on earlier studies at lower altitudes, it was hypothesized that acclimatization to high altitude would lead to a reduction in loop gain and thus central sleep apnoea (CSA) severity. METHODS: This study used exposure to very high altitude to induce CSA in healthy subjects to investigate the effect of partial acclimatization on loop gain and CSA severity. Measurements were made on 12 subjects (age 30 ± 10 years, body mass index 22.8 ± 1.9, eight males, four females) at an altitude of 5050 m over a 2-week period upon initial arrival (days 2-4) and following partial acclimatization (days 12-14). Sleep was studied by full polysomnography, and resting arterial blood gases were measured. Loop gain was measured by the 'duty cycle' method (duration of hyperpnoea/cycle length). RESULTS: Partial acclimatization to high-altitude exposure was associated with both an increase in loop gain (duty cycle fell from 0.60 ± 0.05 to 0.55 ± 0.06 (P = 0.03)) and severity of CSA (apnoea-hypopnoea index increased from 76.8 ± 48.8 to 115.9 ± 20.2 (P = 0.01)), while partial arterial carbon dioxide concentration fell from 29 ± 3 to 26 ± 2 (P = 0.01). CONCLUSIONS: Contrary to the results at lower altitudes, at high-altitude loop gain and severity of CSA increased.


Subject(s)
Acclimatization/physiology , Altitude , Feedback, Physiological/physiology , Severity of Illness Index , Sleep Apnea, Central/physiopathology , Adaptation, Physiological/physiology , Adult , Carbon Dioxide/blood , Female , Humans , Male , Polysomnography , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...