Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 27(6): 109906, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38947530

ABSTRACT

Trichodesmium is one of the dominant dinitrogen (N2) fixers in the ocean, influencing global carbon and nitrogen cycles through biochemical reactions. Although its photosynthetic activity fluctuates rapidly, the physiological or ecological advantage of this fluctuation is unclear. We develop a metabolic model of Trichodesmium that can perform daytime N2 fixation. We examined (1) the effect of the duration of switches between photosynthetic and non-photosynthetic cellular states and (2) the effect of the presence and absence of N2 fixation in photosynthetic states. Results show that a rapid switch between photosynthetic and non-photosynthetic states increases Trichodesmium growth rates by improving metabolic efficiencies due to an improved balance of C and N metabolism. This provides a strategy for previous paradoxical observations that all Trichodesmium cells can contain nitrogenase. This study reveals the importance of fluctuating photosynthetic activity and provides a mechanism for daytime N2 fixation that allows Trichodesmium to fix N2 aerobically in the global ocean.

2.
Dis Aquat Organ ; 143: 147-158, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33629659

ABSTRACT

Lobsters and other crustaceans do not have sterile hemolymph. Despite this, little is known about the microbiome in the hemolymph of the lobster Homarus americanus. The purpose of this study was to characterize the hemolymph microbiome in lobsters. The lobsters were part of a larger study on the effect of temperature on epizootic shell disease, and several died during the course of the study, providing an opportunity to examine differences in the microbiomes between live and recently dead (1-24 h) animals. The hemolymph microbiomes of live lobsters was different from those in dead animals and both were different from the tank microbiome in which the animals had been held. The microbiomes of live lobsters were more diverse and had a different suite of bacteria than those from dead animals. The dominant taxa in live lobsters belonged to Flavobacteriaceae and Rhodobacteraceae, whereas Vibrionaceae and Enterobacteriaceae were predominant in the dead lobsters. Although aquarium microbiomes overlapped with the hemolymph microbiomes, there was less overlap and lower abundance of taxa in comparison with hemolymph from live lobsters. Previous studies reporting bacteria in the digestive tract of lobsters suggested that Vibrionaceae and Enterobacteriaceae had invaded the hemolymph via the gut. Our study suggests that hemolymph bacteria abundant in live lobsters do not originate from the tank milieu and comprise a rich, natural, or native background of bacterial constituents.


Subject(s)
Flavobacteriaceae , Microbiota , Animals , Hemolymph , Nephropidae , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...