Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Fish Biol ; 102(4): 893-903, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36647819

ABSTRACT

Computed tomography (CT) scanning and other high-throughput three-dimensional (3D) visualization tools are transforming the ways we study morphology, ecology and evolutionary biology research beyond generating vast digital repositories of anatomical data. Contrast-enhanced chemical staining methods, which render soft tissues radio-opaque when coupled with CT scanning, encompass several approaches that are growing in popularity and versatility. Of these, the various diceCT techniques that use an iodine-based solution like Lugol's have provided access to an array of morphological data sets spanning extant vertebrate lineages. This contribution outlines straightforward means for applying diceCT techniques to preserved museum specimens of cartilaginous and bony fishes, collectively representing half of vertebrate species diversity. This study contrasts the benefits of using either aqueous or ethylic Lugol's solutions and reports few differences between these methods with respect to the time required to achieve optimal tissue contrast. It also explores differences in minimum stain duration required for different body sizes and shapes and provides recommendations for staining specimens individually or in small batches. As reported by earlier studies, the authors note a decrease in pH during staining with either aqueous or ethylic Lugol's. Nonetheless, they could not replicate the drastic declines in pH reported elsewhere. They provide recommendations for researchers and collections staff on how to incorporate diceCT into existing curatorial practices, while offsetting risk to specimens. Finally, they outline how diceCT with Lugol's can aid ichthyologists of all kinds in visualizing anatomical structures of interest: from brains and gizzards to gas bladders and pharyngeal jaw muscles.


Subject(s)
Iodine , Animals , Iodine/chemistry , Contrast Media/chemistry , Coloring Agents , Brain , Fishes
2.
J Anat ; 242(3): 525-534, 2023 03.
Article in English | MEDLINE | ID: mdl-36434746

ABSTRACT

Though Paleozoic ray-finned fishes are considered to be morphologically conservative, we report a novel mode of fang accommodation (i.e., the fitting of fangs inside the jaw) in the Permian actinopterygian †Brazilichthys macrognathus, whereby the teeth of the lower jaw insert into fenestrae of the upper jaw. To better understand how fishes have accommodated lower jaw fangs through geologic time, we synthesize the multitude of ways living and extinct osteichthyans have housed large mandibular dentition. While the precise structure of fang accommodation seen in †Brazilichthys has not been reported in any other osteichthyans, alternate strategies of upper jaw fenestration to fit mandibular fangs are present in some extant ray-finned fishes-the needlejaws Acestrorhynchus and the gars of the genus Lepisosteus. Notably, out of our survey, only the two aforementioned neopterygians bear upper jaw fenestration for the accommodation of mandibular fangs. We implicate the kinetic jaws of neopterygians in this trend, whereby large mandibular fangs are more easily fit between the multitude of upper jaw and palatal bones. The restricted space available in early osteichthyan jaws may have led to a proliferation of novel ways to accommodate large dentition. We recommend a greater survey of Paleozoic actinopterygian jaw morphology, in light of these results and other recent reevaluations of jaw structure in early fossil ray-fins.


Subject(s)
Tooth , Animals , Tooth/anatomy & histology , Fishes/anatomy & histology , Jaw/anatomy & histology , Maxilla/anatomy & histology , Mandible/anatomy & histology , Fossils
SELECTION OF CITATIONS
SEARCH DETAIL
...