Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 239
Filter
1.
Am J Trop Med Hyg ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861962

ABSTRACT

Novel methods are required to aid the monitoring of schistosomiasis control and elimination initiatives through mass drug administration. Portable digital and mobile phone microscopy is a promising tool for this purpose. This cross-sectional study evaluated the diagnostic operating characteristics of a converted mobile phone microscope (the SchistoScope) for the detection of Schistosoma haematobium eggs, as determined by community-based field workers and expert microscopists, compared with a field gold standard of light microscopy. Three hundred sixty-five urine samples were evaluated by conventional light microscopy, with 49 (13.4%) positive for S. haematobium. Compared with light microscopy, the sensitivity and specificity of S. haematobium detection by field microscopists trained to use the SchistoScope were 26.5% (95% CI: 14.9-41.1%) and 98.4% (95% CI: 96.3-99.5%), respectively. The sensitivity and specificity of S. haematobium detection by expert microscopists using the SchistoScope was 74% (95% CI: 59.7-85.4%) and 98.1% (95% CI: 95.9-99.3%), respectively, compared with light microscopy. The sensitivity rose to 96.1% and 100% when evaluating for egg counts greater than five and 10 eggs per 10 mL, respectively. A point-of-care circulating cathodic anion (POC CCA) test was used to evaluate Schistosoma mansoni; however, there were too few positive samples to reliably comment on diagnostic characteristics. This study demonstrated that a "urine-only" approach to rapidly screen for schistosomiasis at the point of sample collection can be conducted with mobile phone microscopy (S. haematobium) coupled with POC CCA (S. mansoni). Such an approach may aid in streamlined schistosomiasis control and elimination initiatives.

2.
Am J Trop Med Hyg ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861980

ABSTRACT

Scrub typhus, a vector-borne bacterial infection, is an important but neglected disease globally. Accurately characterizing the burden is challenging because of nonspecific symptoms and limited diagnostics. Prior seroepidemiology studies have struggled to find consensus cutoffs that permit comparisons of estimates across contexts and time. In this study, we present a novel approach that does not require a cutoff and instead uses information about antibody kinetics after infection to estimate seroincidence. We use data from three cohorts of scrub typhus patients in Chiang Rai, Thailand, and Vellore, India, to characterize antibody kinetics after infection and two population serosurveys in the Kathmandu Valley, Nepal, and Tamil Nadu, India, to estimate seroincidence. The samples were tested for IgM and IgG responses to Orientia tsutsugamushi-derived recombinant 56-kDa antigen using commercial enzyme-linked immunosorbent assay kits. We used Bayesian hierarchical models to characterize antibody responses after scrub typhus infection and used the joint distributions of the peak antibody titers and decay rates to estimate population-level incidence rates in the cross-sectional serosurveys. Median responses persisted above an optical density (OD) of 1.8 for 23.6 months for IgG and an OD of 1 for 4.5 months for IgM. Among 18- to 29-year-olds, the seroincidence was 10 per 1,000 person-years (95% CI, 5-19) in Tamil Nadu, India, and 14 per 1,000 person-years (95% CI: 10-20) in the Kathmandu Valley, Nepal. When seroincidence was calculated with antibody decay ignored, the disease burden was underestimated by more than 50%. The approach can be deployed prospectively, coupled with existing serosurveys, or leverage banked samples to efficiently generate scrub typhus seroincidence estimates.

3.
medRxiv ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38853839

ABSTRACT

While incidence of tuberculosis (TB) has decreased globally, in Paraguay, considered a medium-incidence country by the WHO, TB incidence has increased slightly from 42 per 100,000 in 2010 to 46 per 100,000 in 2022. We conducted a retrospective study of TB cases notified to the Paraguay National Program for Tuberculosis Control (NPTC) from 2018 to 2022 and quantified trends in specific populations identified as vulnerable. Of the 13,725 TB cases notified in Paraguay from 2018 to 2022, 2,331 (17%) occurred among incarcerated individuals and 1,743 (12.7%) occurred among self-identified Indigenous individuals. In 2022, the relative risk of TB was 87 and 6.4 among the incarcerated and Indigenous populations, compared with the non-incarcerated and non-Indigenous populations respectively. We found significant heterogeneity in TB incidence across Paraguay's 17 departments. Our findings highlight the urgency of expanding access to TB diagnosis, treatment, and prevention in populations at heightened risk of TB in Paraguay.

4.
Lancet Reg Health Am ; 34: 100755, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38737773

ABSTRACT

Background: The emergence of COVID-19 variants with immune scape and the waning of primary vaccine schemes effectiveness have prompted many countries to indicate first and second booster COVID-19 vaccine doses to prevent severe COVID-19. However, current available evidence on second booster dose effectiveness are mostly limited to high-income countries, older adults, and mRNA-based vaccination schemes scenarios. We aimed to investigate the relative vaccine effectiveness (rVE) of the fourth dose compared to three doses for severe COVID-19 outcomes in Brazil; and compare the rVE of a fourth dose with an mRNA vaccine compared to adenovirus-based product in the same settings. Methods: We performed a target emulated trial using a population-based cohort of individuals aged 40 years or older who have received a homologous primary scheme of CoronaVac, ChAdOx1, or BNT162b2, and any third dose product and were eligible for the fourth dose in Brazil. The primary outcome was COVID-19 associated hospitalization or death. We built Cohort A matching individuals vaccinated with a fourth dose to individuals who received three doses to estimate the rVE of the fourth dose. We built Cohort B, a subset of Cohort A, matching mRNA-based (mRNA) to adenovirus-based fourth dose vaccinated individuals to compare their relative hazards for severe COVID-19. Findings: 46,693,484 individuals were included in Cohort A and 6,763,016 in Cohort B. 45% of them were aged between 40 and 60 years old, and 48% between 60 and 79 years old. In Cohort A, the most common previous series was a ChAdOx1 two-dose followed by BNT162b2 (44%), and a CoronaVac two-dose followed by a BNT162b2 (36%). Among those fourth dose vaccinated, 36.9% received ChAdOx1, 32.7% Ad26.COV2.S, 25.8% BNT162b2, and 4.7% CoronaVac. In Cohort B, among those who received an adenovirus fourth dose, 53.7% received ChAdOx1 and 46.3% received Ad26.COV2.S. The estimated rVE for the primary outcome of four doses compared to three doses was 44.1% (95% CI 42.3-46.0), with some waning during follow-up (rVE 7-60 days 46.8% [95% CI 44.4-49.1], rVE after 120 days 33.8% [95% CI 18.0-46.6]). Among fourth dose vaccinated individuals, mRNA-based vaccinated individuals had lower hazards for hospitalization or death compared to adenovirus-vaccinated individuals (HR 0.81, 95% CI 0.75-0.87). After 120 days, no difference in hazards between groups was observed (HR 1.35, 95% CI 0.93-1.97). Similar findings were observed for hospitalization and death separately, except no evidence for differences between fourth dose brands for death in Cohort B. Interpretation: In a heterogeneous scenario of primary and first booster vaccination combinations, a fourth dose provided meaningful and durable protection against severe COVID-19 outcomes. Compared to adenovirus-based booster, a fourth dose wild-type mRNA vaccine was associated with immediate lower hazards of hospitalization or death unsustained after 120 days. Funding: None.

5.
Am J Respir Crit Care Med ; 209(12): 1486-1496, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38647526

ABSTRACT

Rationale: Standardized dosing of antitubercular drugs leads to variable plasma drug levels, which are associated with adverse drug reactions, delayed treatment response, and relapse. Mutations in genes affecting drug metabolism explain considerable interindividual pharmacokinetic variability; however, pharmacogenomic assays that predict metabolism of antitubercular drugs have been lacking. Objectives: We sought to develop a Nanopore sequencing panel and validate its performance in patients with active tuberculosis (TB) to personalize treatment dosing. Methods: We developed a Nanopore sequencing panel targeting 15 SNPs in five genes affecting the metabolism of antitubercular drugs. For validation, we sequenced DNA samples (n = 48) from the 1,000 Genomes Project and compared the variant calling accuracy with that of Illumina genome sequencing. We then sequenced DNA samples from patients with active TB (n = 100) from South Africa on a MinION Mk1C and evaluated the relationship between genotypes and pharmacokinetic parameters for isoniazid (INH) and rifampin (RIF). Measurements and Main Results: The pharmacogenomic panel achieved 100% concordance with Illumina sequencing in variant identification for the samples from the 1,000 Genomes Project. In the clinical cohort, coverage was more than 100× for 1,498 of 1,500 (99.8%) amplicons across the 100 samples. Thirty-three percent, 47%, and 20% of participants were identified as slow, intermediate, and rapid INH acetylators, respectively. INH clearance was 2.2 times higher among intermediate acetylators and 3.8 times higher among rapid acetylators, compared with slow acetylators (P < 0.0001). RIF clearance was 17.3% (2.50-29.9) lower in individuals with homozygous AADAC rs1803155 G→A substitutions (P = 0.0015). Conclusions: Targeted sequencing can enable the detection of polymorphisms that influence TB drug metabolism on a low-cost, portable instrument to personalize dosing for TB treatment or prevention.


Subject(s)
Antitubercular Agents , Nanopore Sequencing , Polymorphism, Single Nucleotide , Tuberculosis , Humans , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacokinetics , Female , Male , Adult , Tuberculosis/drug therapy , Tuberculosis/genetics , Nanopore Sequencing/methods , Polymorphism, Single Nucleotide/genetics , Middle Aged , Precision Medicine/methods , Isoniazid/therapeutic use , Isoniazid/pharmacokinetics , Rifampin , Pharmacogenomic Testing/methods , Pharmacogenetics/methods , South Africa , Young Adult
6.
BMJ Open ; 14(3): e075176, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38479740

ABSTRACT

OBJECTIVES: Tuberculosis infection (TBI) is marked by dynamic host-pathogen interactions with persistent low-grade inflammation and is associated with increased risk of cardiovascular diseases (CVD) including acute coronary syndrome, myocardial infarction and stroke. However, few studies assess the relationship between TBI and hypertension, an intermediate of CVD. We sought to determine the association between TBI and hypertension using data representative of the adult US population. METHODS: We performed cross-sectional analyses using data from the 2011-2012 US National Health and Nutrition Examination Survey (NHANES). Eligible participants included adults with valid QuantiFERON-TB Gold In-Tube (QFT-GIT) test results who also had blood pressure measures and no history of TB disease. TBI was defined by a positive QFT-GIT. We defined hypertension by either elevated measured blood pressure levels (ie, systolic ≥130 mm Hg or diastolic ≥80 mm Hg) or known hypertension indications (ie, self-reported previous diagnosis or use of antihypertensive medications). Analyses were performed using robust quasi-Poisson regressions and accounted for the stratified probability sampling design of NHANES. RESULTS: The overall prevalence of TBI was 5.7% (95% CI 4.7% to 6.7%) and hypertension was present among 48.9% (95% CI 45.2% to 52.7%) of participants. The prevalence of hypertension was higher among those with TBI (58.5%, 95% CI 52.4% to 64.5%) than those without TBI (48.3%, 95% CI 44.5% to 52.1%) (prevalence ratio (PR) 1.2, 95% CI 1.1 to 1.3). However, after adjusting for confounders, the prevalence of hypertension was similar for those with and without TBI (adjusted PR 1.0, 95% CI 1.0 to 1.1). The unadjusted prevalence of hypertension was higher among those with TBI versus no TBI, especially among individuals without CVD risk factors including those with normal body mass index (PR 1.6, 95% CI 1.2 to 2.0), euglycaemia (PR 1.3, 95% CI 1.1 to 1.5) or non-smokers (PR 1.2, 95% CI 1.1 to 1.4). CONCLUSIONS: More than half of adults with TBI in the USA had hypertension. Importantly, we observed a relationship between TBI and hypertension among those without established CVD risk factors. SUMMARY: The prevalence of hypertension was high (59%) among adults with TBI in the USA. In addition, we found that the prevalence of hypertension was significantly higher among adults with positive QFT without established hypertension risk factors.


Subject(s)
Hypertension , Latent Tuberculosis , Myocardial Infarction , Tuberculosis , Adult , Humans , Nutrition Surveys , Prevalence , Cross-Sectional Studies , Hypertension/drug therapy , Tuberculosis/diagnosis , Risk Factors , Myocardial Infarction/complications
7.
Lancet Reg Health Am ; 31: 100668, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38500958

ABSTRACT

Background: The increased risk of tuberculosis (TB) among people deprived of liberty (PDL) is due to individual and institution-level factors. We followed a cohort of PDL from 5 prisons in Paraguay to describe the risk of TB during incarceration and after they were released. Methods: We linked a 2013 national census of prisons with TB records from the TB Program from 2010 to 2021 to identify TB notifications among incarcerated and formerly incarcerated individuals. We used multivariable Cox regression models to quantify the risk of TB during and following incarceration and to identify risk factors associated with TB. Findings: Among 2996 individuals incarcerated, 451 (15.1%) were diagnosed with TB. Of these, 262 (58.1%) cases occurred during incarceration and 189 (41.9%) occurred in the community after release. In prison, the hazard ratio of developing TB was 1.97 (95% CI: 1.52-2.61) after six months of incarceration and increased to 2.78 (95% CI: 1.82-4.24) after 36 months compared with the first six months. The overall TB notification rate was 2940 per 100,000 person-years. This rate increased with the duration of incarceration from 1335 per 100,000 person-years in the first year to 8455 per 100,000 person-years after 8 years. Among former prisoners, the rate of TB decreased from 1717 in the first year after release to 593 per 100 000 person-years after 8 years of follow up. Interpretation: Our study shows the alarming risk of TB associated with prison environments in Paraguay, and how this risk persists for years following incarceration. Effective TB control measures to protect the health of people during and following incarceration are urgently needed. Funding: Paraguay National Commission of Science and Technology grant CONACYT PIN 15-705 (GS, GES, SA).

8.
Vaccine ; 42(11): 2867-2876, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38531727

ABSTRACT

PURPOSE: Typhoid fever causes substantial morbidity and mortality in Bangladesh. The government of Bangladesh plans to introduce typhoid conjugate vaccines (TCV) in its expanded program on immunization (EPI) schedule. However, the optimal introduction strategy in addition to the costs and benefits of such a program are unclear. METHODS: We extended an existing mathematical model of typhoid transmission to integrate cost data, clinical incidence data, and recently conducted serosurveys in urban, semi-urban, and rural areas. In our primary analysis, we evaluated the status quo (i.e., no vaccination) and eight vaccine introduction strategies including routine and 1-time campaign strategies, which differed by age groups targeted and geographic focus. Model outcomes included clinical incidence, seroincidence, deaths, costs, disability-adjusted life years (DALYs), and incremental cost-effectiveness ratios (ICERs) for each strategy. We adopted a societal perspective, 10-year model time horizon, and 3 % annual discount rate. We performed probabilistic, one-way, and scenario sensitivity analyses including adopting a healthcare perspective and alternate model time horizons. RESULTS: We projected that all TCV strategies would be cost saving compared to the status quo. The preferred strategy was a nationwide introduction of TCV at 9-12 months of age with a single catch-up campaign for children ages 1-15, which was cost saving compared to all other strategies and the status quo. In the 10 years following implementation, we projected this strategy would avert 3.77 million cases (95 % CrI: 2.60 - 5.18), 11.31 thousand deaths (95 % CrI: 3.77 - 23.60), and save $172.35 million (95 % CrI: -14.29 - 460.59) compared to the status quo. Our findings were broadly robust to changes in parameter values and willingness-to-pay thresholds. CONCLUSIONS: We projected that nationwide TCV introduction with a catch-up campaign would substantially reduce typhoid incidence and very likely be cost saving in Bangladesh.


Subject(s)
Typhoid Fever , Typhoid-Paratyphoid Vaccines , Child , Humans , Typhoid Fever/epidemiology , Typhoid Fever/prevention & control , Cost-Benefit Analysis , Vaccines, Conjugate , Public Health , Bangladesh/epidemiology
9.
Lancet Infect Dis ; 24(6): 594-601, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38423021

ABSTRACT

BACKGROUND: The effectiveness of BCG vaccine for adult pulmonary tuberculosis remains uncertain. In this study, we aimed to evaluate the effect of vaccination with BCG-Denmark to prevent initial and sustained interferon-γ release assay conversion in Brazilian health-care workers. METHODS: This substudy is a nested randomised controlled trial embedded within the BRACE trial (NCT04327206). Specifically, this substudy enrolled Brazilian health-care workers (aged ≥18 years) from three sites in Brazil (Manaus, Campo Grande, and Rio de Janeiro) irrespective of previously receiving BCG vaccination. Participants were excluded if they had contraindications to BCG vaccination, more than 1 month of treatment with specific tuberculosis treatment drugs, previous adverse reactions to BCG, recent BCG vaccination, or non-compliance with assigned interventions. Those eligible were randomly assigned (1:1) to either the BCG group (0·1 mL intradermal injection of BCG-Denmark [Danish strain 1331; AJ Vaccines, Copenhagen]) or the placebo group (intradermal injection of 0·9% saline) using a web-based randomisation process in variable-length blocks (2, 4, or 6), and were stratified based on the study site, age (<40, ≥40 to <60, ≥60 years), and comorbidity presence (diabetes, chronic respiratory disease, cardiac condition, hypertension). Sealed syringes were used to prevent inadvertent disclosure of group assignments. The QuantiFERON-TB Gold (QFT) Plus test (Qiagen; Hilden, Germany) was used for baseline and 12-month tuberculosis infection assessments. The primary efficacy outcome was QFT Plus conversion (≥0·35 IU/mL) by 12 months following vaccination in participants who had a negative baseline result (<0·35 IU/mL). FINDINGS: Between Oct 7, 2020, and April 12, 2021, 1985 (77·3%) of 2568 participants were eligible for QFT Plus assessment at 12 months and were included in this substudy; 996 (50·2%) of 1985 were in the BCG group and 989 (49·8%) were in the placebo group. Overall, 1475 (74·3%) of 1985 participants were women and 510 (25·7%) were men, and the median age was 39 years (IQR 32-47). During the first 12 months, QFT Plus conversion occurred in 66 (3·3%) of 1985 participants, with no significant differences by study site (p=0·897). Specifically, 34 (3·4%) of 996 participants had initial QFT conversion in the BCG group compared with 32 (3·2%) of 989 in the placebo group (risk ratio 1·09 [95% CI 0·67-1·77]; p=0·791). INTERPRETATION: BCG-Denmark vaccination did not reduce initial QFT Plus conversion risk in Brazilian health-care workers. This finding underscores the need to better understand tuberculosis prevention in populations at high risk. FUNDING: Bill & Melinda Gates Foundation, the Minderoo Foundation, Sarah and Lachlan Murdoch, the Royal Children's Hospital Foundation, Health Services Union NSW, the Peter Sowerby Foundation, SA Health, the Insurance Advisernet Foundation, the NAB Foundation, the Calvert-Jones Foundation, the Modara Pines Charitable Foundation, the United Health Group Foundation, Epworth Healthcare, and individual donors. TRANSLATION: For the Portuguese translation of the abstract see Supplementary Materials section.


Subject(s)
BCG Vaccine , Health Personnel , Humans , BCG Vaccine/administration & dosage , BCG Vaccine/immunology , Male , Adult , Female , Brazil , Middle Aged , Vaccination , Mycobacterium tuberculosis/immunology , Tuberculosis, Pulmonary/prevention & control , Interferon-gamma Release Tests , Young Adult
10.
PLoS Negl Trop Dis ; 18(2): e0011822, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38358956

ABSTRACT

Typhoid-conjugate vaccines (TCVs) provide an opportunity to reduce the burden of typhoid fever, caused by Salmonella Typhi, in endemic areas. As policymakers design vaccination strategies, accurate and high-resolution data on disease burden is crucial. However, traditional blood culture-based surveillance is resource-extensive, prohibiting its large-scale and sustainable implementation. Salmonella Typhi is a water-borne pathogen, and here, we tested the potential of Typhi-specific bacteriophage surveillance in surface water bodies as a low-cost tool to identify where Salmonella Typhi circulates in the environment. In 2021, water samples were collected and tested for the presence of Salmonella Typhi bacteriophages at two sites in Bangladesh: urban capital city, Dhaka, and a rural district, Mirzapur. Salmonella Typhi-specific bacteriophages were detected in 66 of 211 (31%) environmental samples in Dhaka, in comparison to 3 of 92 (3%) environmental samples from Mirzapur. In the same year, 4,620 blood cultures at the two largest pediatric hospitals of Dhaka yielded 215 (5%) culture-confirmed typhoid cases, and 3,788 blood cultures in the largest hospital of Mirzapur yielded 2 (0.05%) cases. 75% (52/69) of positive phage samples were collected from sewage. All isolated phages were tested against a panel of isolates from different Salmonella Typhi genotypes circulating in Bangladesh and were found to exhibit a diverse killing spectrum, indicating that diverse bacteriophages were isolated. These results suggest an association between the presence of Typhi-specific phages in the environment and the burden of typhoid fever, and the potential of utilizing environmental phage surveillance as a low-cost tool to assist policy decisions on typhoid control.


Subject(s)
Bacteriophages , Typhoid Fever , Typhoid-Paratyphoid Vaccines , Humans , Child , Typhoid Fever/epidemiology , Typhoid Fever/prevention & control , Bangladesh/epidemiology , Salmonella typhi/genetics , Water
11.
PLoS Negl Trop Dis ; 18(2): e0011912, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38329937

ABSTRACT

BACKGROUND: Environmental surveillance, using detection of Salmonella Typhi DNA, has emerged as a potentially useful tool to identify typhoid-endemic settings; however, it is relatively costly and requires molecular diagnostic capacity. We sought to determine whether S. Typhi bacteriophages are abundant in water sources in a typhoid-endemic setting, using low-cost assays. METHODOLOGY: We collected drinking and surface water samples from urban, peri-urban and rural areas in 4 regions of Nepal. We performed a double agar overlay with S. Typhi to assess the presence of bacteriophages. We isolated and tested phages against multiple strains to assess their host range. We performed whole genome sequencing of isolated phages, and generated phylogenies using conserved genes. FINDINGS: S. Typhi-specific bacteriophages were detected in 54.9% (198/361) of river and 6.3% (1/16) drinking water samples from the Kathmandu Valley and Kavrepalanchok. Water samples collected within or downstream of population-dense areas were more likely to be positive (72.6%, 193/266) than those collected upstream from population centers (5.3%, 5/95) (p=0.005). In urban Biratnagar and rural Dolakha, where typhoid incidence is low, only 6.7% (1/15, Biratnagar) and 0% (0/16, Dolakha) river water samples contained phages. All S. Typhi phages were unable to infect other Salmonella and non-Salmonella strains, nor a Vi-knockout S. Typhi strain. Representative strains from S. Typhi lineages were variably susceptible to the isolated phages. Phylogenetic analysis showed that S. Typhi phages belonged to the class Caudoviricetes and clustered in three distinct groups. CONCLUSIONS: S. Typhi bacteriophages were highly abundant in surface waters of typhoid-endemic communities but rarely detected in low typhoid burden communities. Bacteriophages recovered were specific for S. Typhi and required Vi polysaccharide for infection. Screening small volumes of water with simple, low-cost (~$2) plaque assays enables detection of S. Typhi phages and should be further evaluated as a scalable tool for typhoid environmental surveillance.


Subject(s)
Bacteriophages , Salmonella Phages , Typhoid Fever , Humans , Typhoid Fever/epidemiology , Salmonella typhi/genetics , Phylogeny , Bacteriophages/genetics , Water
13.
medRxiv ; 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38260355

ABSTRACT

Aedes-borne pathogens have been increasing in incidence in recent decades despite vector control activities implemented in endemic settings. Vector control for Aedes-transmitted arboviruses typically focuses on households because vectors breed in household containers and bite indoors. Yet, our recent work shows a high abundance of Aedes spp. vectors in public spaces. To investigate the impact of non-household environments on dengue transmission and control, we used field data on the number of water containers and abundance of Aedes mosquitoes in Household (HH) and Non-Household (NH) environments in two Kenyan cities, Kisumu and Ukunda, from 2019-2022. Incorporating information on human activity space, we developed an agent-based model to simulate city-wide conditions considering HH and five types of NH environments in which people move and interact with other humans and vectors during peak biting times. We additionally evaluated the outcome of vector control activities implemented in different environments in preventive (before an epidemic) and reactive (after an epidemic commences) scenarios. We estimated that over half of infections take place in NH environments, where the main spaces for transmission are workplaces, markets, and recreational locations. Accordingly, results highlight the important role of vector control activities at NH locations to reduce dengue. A greater reduction of cases is expected as control activities are implemented earlier, at higher levels of coverage, with greater effectiveness when targeting only NH as opposed to when targeting only HH. Further, local ecological factors such as the differential abundance of water containers within cities are also influential factors to consider for control. This work provides insight into the importance of vector control in both household and non-household environments in endemic settings. It highlights a specific approach to inform evidence-based decision making to target limited vector control resources for optimal control.

14.
Proc Natl Acad Sci U S A ; 121(2): e2315463120, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38181058

ABSTRACT

Schistosomiasis is a neglected tropical disease affecting over 150 million people. Hotspots of Schistosoma transmission-communities where infection prevalence does not decline adequately with mass drug administration-present a key challenge in eliminating schistosomiasis. Current approaches to identify hotspots require evaluation 2-5 y after a baseline survey and subsequent mass drug administration. Here, we develop statistical models to predict hotspots at baseline prior to treatment comparing three common hotspot definitions, using epidemiologic, survey-based, and remote sensing data. In a reanalysis of randomized trials in 589 communities in five endemic countries, a regression model predicts whether Schistosoma mansoni infection prevalence will exceed the WHO threshold of 10% in year 5 ("prevalence hotspot") with 86% sensitivity, 74% specificity, and 93% negative predictive value (NPV; assuming 30% hotspot prevalence), and a regression model for Schistosoma haematobium achieves 90% sensitivity, 90% specificity, and 96% NPV. A random forest model predicts whether S. mansoni moderate and heavy infection prevalence will exceed a public health goal of 1% in year 5 ("intensity hotspot") with 92% sensitivity, 79% specificity, and 96% NPV, and a boosted trees model for S. haematobium achieves 77% sensitivity, 95% specificity, and 91% NPV. Baseline prevalence is a top predictor in all models. Prediction is less accurate in countries not represented in training data and for a third hotspot definition based on relative prevalence reduction over time ("persistent hotspot"). These models may be a tool to prioritize high-risk communities for more frequent surveillance or intervention against schistosomiasis, but prediction of hotspots remains a challenge.


Subject(s)
Schistosomiasis mansoni , Schistosomiasis , Humans , Animals , Mass Drug Administration , Schistosomiasis/drug therapy , Schistosomiasis/epidemiology , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/epidemiology , Schistosoma haematobium , Models, Statistical
15.
Clin Infect Dis ; 78(1): 154-163, 2024 01 25.
Article in English | MEDLINE | ID: mdl-37623745

ABSTRACT

INTRODUCTION: In high-burden settings, low-complexity screening tests for tuberculosis (TB) could expand the reach of community-based case-finding efforts. The potential costs and cost-effectiveness of approaches incorporating these tests are poorly understood. METHODS: We developed a microsimulation model assessing 3 approaches to community-based case-finding in hypothetical populations (India-, South Africa-, The Philippines-, Uganda-, and Vietnam-like settings) with TB prevalence 4 times that of national estimates: (1) screening with a point-of-care C-reactive protein (CRP) test, (2) screening with a more sensitive "Hypothetical Screening test" (95% sensitive for Xpert Ultra-positive TB, 70% specificity; equipment/labor costs similar to Xpert Ultra, but using a $2 cartridge) followed by sputum Xpert Ultra if positive, or (3) testing all individuals with sputum Xpert Ultra. Costs are expressed in 2023 US dollars and include treatment costs. RESULTS: Universal Xpert Ultra was estimated to cost a mean $4.0 million (95% uncertainty range: $3.5 to $4.6 million) and avert 3200 (2600 to 3900) TB-related disability-adjusted life years (DALYs) per 100 000 people screened ($670 [The Philippines] to $2000 [Vietnam] per DALY averted). CRP was projected to cost $550 (The Philippines) to $1500 (Vietnam) per DALY averted but with 44% fewer DALYs averted. The Hypothetical Screening test showed minimal benefit compared to universal Xpert Ultra, but if specificity were improved to 95% and per-test cost to $4.5 (all-inclusive), this strategy could cost $390 (The Philippines) to $940 (Vietnam) per DALY averted. CONCLUSIONS: Screening tests can meaningfully improve the cost-effectiveness of community-based case-finding for TB but only if they are sensitive, specific, and inexpensive.


Subject(s)
Tuberculosis , Humans , Cost-Benefit Analysis , Tuberculosis/diagnosis , Tuberculosis/epidemiology , South Africa , Health Care Costs , Sputum , Sensitivity and Specificity
17.
Med Decis Making ; 44(1): 5-17, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37953597

ABSTRACT

BACKGROUND: Compartmental infectious disease (ID) models are often used to evaluate nonpharmaceutical interventions (NPIs) and vaccines. Such models rarely separate within-household and community transmission, potentially introducing biases in situations in which multiple transmission routes exist. We formulated an approach that incorporates household structure into ID models, extending the work of House and Keeling. DESIGN: We developed a multicompartment susceptible-exposed-infectious-recovered-susceptible-vaccinated (MC-SEIRSV) modeling framework, allowing nonexponentially distributed duration in exposed and infectious compartments, that tracks within-household and community transmission. We simulated epidemics that varied by community and household transmission rates, waning immunity rate, household size (3 or 5 members), and numbers of exposed and infectious compartments (1-3 each). We calibrated otherwise identical models without household structure to the early phase of each parameter combination's epidemic curve. We compared each model pair in terms of epidemic forecasts and predicted NPI and vaccine impacts on the timing and magnitude of the epidemic peak and its total size. Meta-analytic regressions characterized the relationship between household structure inclusion and the size and direction of biases. RESULTS: Otherwise similar models with and without household structure produced equivalent early epidemic curves. However, forecasts from models without household structure were biased. Without intervention, they were upward biased on peak size and total epidemic size, with biases also depending on the number of exposed and infectious compartments. Model-estimated NPI effects of a 60% reduction in community contacts on peak time and size were systematically overestimated without household structure. Biases were smaller with a 20% reduction NPI. Because vaccination affected both community and household transmission, their biases were smaller. CONCLUSIONS: ID models without household structure can produce biased outcomes in settings in which within-household and community transmission differ. HIGHLIGHTS: Infectious disease models rarely separate household transmission from community transmission. The pace of household transmission may differ from community transmission, depends on household size, and can accelerate epidemic growth.Many infectious disease models assume exponential duration distributions for infected states. However, the duration of most infections is not exponentially distributed, and distributional choice alters modeled epidemic dynamics and intervention effectiveness.We propose a mathematical framework for household and community transmission that allows for nonexponential duration times and a suite of interventions and quantified the effect of accounting for household transmission by varying household size and duration distributions of infected states on modeled epidemic dynamics.Failure to include household structure induces biases in the modeled overall course of an epidemic and the effects of interventions delivered differentially in community settings. Epidemic dynamics are faster and more intense in populations with larger household sizes and for diseases with nonexponentially distributed infectious durations. Modelers should consider explicitly incorporating household structure to quantify the effects of non-pharmaceutical interventions (e.g., shelter-in-place).


Subject(s)
Communicable Diseases , Epidemics , Humans , Communicable Diseases/epidemiology , Epidemics/prevention & control
19.
PLoS Negl Trop Dis ; 17(10): e0011341, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37851667

ABSTRACT

INTRODUCTION: Salmonella Typhi and Salmonella Paratyphi, fecal-oral transmitted bacterium, have temporally and geographically heterogeneous pathways of transmission. Previous work in Kathmandu, Nepal implicated stone waterspouts as a dominant transmission pathway after 77% of samples tested positive for Salmonella Typhi and 70% for Salmonella Paratyphi. Due to a falling water table, these spouts no longer provide drinking water, but typhoid fever persists, and the question of the disease's dominant pathway of transmission remains unanswered. METHODS: We used environmental surveillance to detect Salmonella Typhi and Salmonella Paratyphi A DNA from potential sources of transmission. We collected 370, 1L drinking water samples from a population-based random sample of households in the Kathmandu and Kavre Districts of Nepal between February and October 2019. Between November 2019 and July 2021, we collected 380, 50mL river water samples from 19 sentinel sites on a monthly interval along the rivers leading through the Kathmandu and Kavre Districts. We processed drinking water samples using a single qPCR and processed river water samples using differential centrifugation and qPCR at 0 and after 16 hours of liquid culture enrichment. A 3-cycle threshold (Ct) decrease of Salmonella Typhi or Salmonella Paratyphi, pre- and post-enrichment, was used as evidence of growth. We also performed structured observations of human-environment interactions to understand pathways of potential exposure. RESULTS: Among 370 drinking water samples, Salmonella Typhi was detected in 7 samples (1.8%) and Salmonella Paratyphi A was detected in 4 (1.0%) samples. Among 380 river water samples, Salmonella Typhi was detected in 171 (45%) and Salmonella Paratyphi A was detected in 152 (42%) samples. Samples located upstream of the Kathmandu city center were positive for Salmonella Typhi 12% of the time while samples from locations in and downstream were positive 58% and 67% of the time respectively. Individuals were observed bathing, washing clothes, and washing vegetables in the rivers. IMPLICATIONS: These results suggest that drinking water was not the dominant pathway of transmission of Salmonella Typhi and Salmonella Paratyphi A in the Kathmandu Valley in 2019. The high degree of river water contamination and its use for washing vegetables raises the possibility that river systems represent an important source of typhoid exposure in Kathmandu.


Subject(s)
Drinking Water , Typhoid Fever , Humans , Typhoid Fever/epidemiology , Nepal/epidemiology , Salmonella typhi , Salmonella paratyphi A
20.
medRxiv ; 2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37732197

ABSTRACT

Rationale: Standardized dosing of anti-tubercular (TB) drugs leads to variable plasma drug levels, which are associated with adverse drug reactions, delayed treatment response, and relapse. Mutations in genes affecting drug metabolism explain considerable interindividual pharmacokinetic variability; however, pharmacogenomic (PGx) assays that predict metabolism of anti-TB drugs have been lacking. Objectives: To develop a Nanopore sequencing panel and validate its performance in active TB patients to personalize treatment dosing. Measurements and Main Results: We developed a Nanopore sequencing panel targeting 15 single nucleotide polymorphisms (SNP) in 5 genes affecting the metabolism of isoniazid (INH), rifampin (RIF), linezolid and bedaquiline. For validation, we sequenced DNA samples (n=48) from the 1000 genomes project and compared variant calling accuracy with Illumina genome sequencing. We then sequenced DNA samples from patients with active TB (n=100) from South Africa on a MinION Mk1C and evaluated the relationship between genotypes and pharmacokinetic parameters for INH and RIF. Results: The PGx panel achieved 100% concordance with Illumina sequencing in variant identification for the samples from the 1000 Genomes Project. In the clinical cohort, coverage was >100x for 1498/1500 (99.8%) amplicons across the 100 samples. One third (33%) of participants were identified as slow, 47% were intermediate and 20% were rapid isoniazid acetylators. Isoniazid clearance was significantly impacted by acetylator status (p<0.0001) with median (IQR) clearances of 11.2 L/h (9.3-13.4), 27.2 L/h (22.0-31.7), and 45.1 L/h (34.1-51.1) in slow, intermediate, and rapid acetylators. Rifampin clearance was 17.3% (2.50-29.9) lower in individuals with homozygous AADAC rs1803155 G>A substitutions (p=0.0015). Conclusion: Targeted sequencing can enable detection of polymorphisms influencing TB drug metabolism on a low-cost, portable instrument to personalize dosing for TB treatment or prevention.

SELECTION OF CITATIONS
SEARCH DETAIL
...