Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiol ; 12(9): 2496-507, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20406292

ABSTRACT

The formation of biofilms by diverse bacteria isolated from contaminated soil and groundwater on model substrata with different surface properties was assessed in a multifactorial screen. Diverse attachment phenotypes were observed as measured by crystal violet dye retention and confocal laser scanning microscopy (CLSM). Bulk measurements of cell hydrophobicity had little predictive ability in determining whether biofilms would develop on hydrophobic or hydrophilic substrata. Therefore selected pairs of bacteria from the genera Rhodococcus, Pseudomonas and Sphingomonas that exhibited different attachment phenotypes were examined in more detail using CLSM and the lipophilic dye, Nile Red. The association of Rhodococcus sp. cell membranes with lipids was shown to influence the attachment properties of these cells, but this approach was not informative for Pseudomonas and Sphingomonas sp. Confocal Raman Microspectroscopy of Rhodococcus biofilms confirmed the importance of lipids in their formation and indicated that in Pseudomonas and Sphingomonas biofilms, nucleic acids and proteins, respectively, were important in identifying the differences in attachment phenotypes of the selected strains. Treatment of biofilms with DNase I confirmed a determining role for nucleic acids as predicted for Pseudomonas. This work demonstrates that the attachment phenotypes of microbes from environmental samples to different substrata varies markedly, a diverse range of macromolecules may be involved and that these differ significantly between genera. A combination of CLSM and Raman spectroscopy distinguished between phenotypes and could be used to identify the key macromolecules involved in cell attachment to surfaces for the specific cases studied.


Subject(s)
Bacterial Adhesion , Biofilms , Pseudomonas/growth & development , Rhodococcus/growth & development , Sphingomonas/growth & development , Cell Membrane/chemistry , Environment , Environmental Microbiology , Hydrophobic and Hydrophilic Interactions , Lipids/chemistry , Microscopy, Confocal , Nucleic Acids/chemistry , Species Specificity , Spectrum Analysis, Raman , Surface Properties
2.
Faraday Discuss ; 139: 85-103; discussion 105-28, 419-20, 2008.
Article in English | MEDLINE | ID: mdl-19048992

ABSTRACT

The attachment of microbial cells to solid substrata is a primary ecological strategy for the survival of species and the development of specific activity and function within communities. An hypothesis arising from a biological sciences perspective may be stated as follows: The attachment of microbes to interfaces is controlled by the macromolecular structure of the cell wall and the functional genes that are induced for its biological synthesis. Following logically from this is the view that diverse attached cell behaviour is mediated by the physical and chemical interactions of these macromolecules in the interfacial region and with other cells. This aspect can be reduced to its simplest form by treating physico-chemical interactions as colloidal forces acting between an isolated cell and a solid or pseudo solid substratum. These forces can be analysed by established methods rooted in DLVO (Derjaguin, Landau, Verwey and Overbeek) theory. Such a methodology provides little insight into what governs changes in the behaviour of the cell wall attached to surfaces, or indeed other cells. Nor does it shed any light on the expulsion of macromolecules that modify the interface such as formation of slime layers. These physical and chemical problems must be treated at the more fundamental level of the structure and behaviour of the individual components of the cell wall, for example biosurfactants and extracellular polysaccharides. This allows us to restate the above hypothesis in physical sciences terms: Cell attachment and related cell growth behaviour is mediated by macromolecular physics and chemistry in the interfacial environment. Ecological success depends on the genetic potential to favourably influence the interface through adaptation of the macromolecular structure, We present research that merges these two perspectives. This is achieved by quantifying attached cell growth for genetically diverse model organisms, building chemical models that capture the variations in interfacial structure and quantifying the resulting physical interactions. Experimental observations combine aqueous chemistry techniques with surface spectroscopy in order to elucidate the cell wall structure. Atomic force microscopy methods quantify the physical interactions between the solid substrata and key components of the cell wall such as macromolecular biosurfactants. Our current approach focuses on considering individually mycolic acids or longer chain polymers harvested from cells, as well as characterised whole cells. This approach allows us to use a multifactorial approach to address the relative impact of the individual components of the cell wall in contact with model surfaces. We then combine these components to increase complexity step-wise, while comparing with the behaviour of entire cells. Eventually, such an approach should allow us to estimate and understand the primary factors governing microbial cell adhesion. Although the work addresses the cell-mineral interface at a fundamental level, the research is driven by a range of technology needs. The initial rationale was improved prediction of contaminant degradation in natural environments (soils, sediments, aquifers) for environmental cleanup. However, this area of research addresses a wide range of biotechnology areas including improved understanding of pathogen survival (e.g., in surgical environments), better process intensification in biomanufacturing (biofilm technologies) and new product development.


Subject(s)
Bacterial Adhesion , Cell Wall/chemistry , Anisotropy , Biofilms , Hydrogen-Ion Concentration , Mycolic Acids/chemistry , Polysaccharides, Bacterial/chemistry , Rhodococcus/physiology , Spectroscopy, Fourier Transform Infrared , Surface Properties
3.
J Microbiol Methods ; 64(1): 96-106, 2006 Jan.
Article in English | MEDLINE | ID: mdl-15927291

ABSTRACT

The construction of artificial biofilms with defined internal architectures is described. Bacterial cells are suspended in a low conductivity medium, guided to specific areas in a microelectrode array by dielectrophoresis (DEP), and then immobilised using the flocculating agent poly(ethylenimine). Multispecies biofilms can be constructed by introducing different species at different times. The rapid construction of such biofilms with defined internal architectures provides, when combined with visual reporters of gene activity, a powerful new method for the investigation of the effects of the spatial organisation on interactions between bacterial species in biofilms. To demonstrate the utility of the technique as a method for investigating metabolic interactions in biofilms, aggregates were constructed from Acinetobacter sp. C6 and Pseudomonas putida::gfp. The Acinetobacter degrades benzyl alcohol, overproducing benzoate, which in turn is consumed by the Pseudomonas strain. The P. putida has a chromosomally expressed cassette encoding a gfp downstream of the promoter which controls degradation of benzoate, making the interaction between the two strains in the metabolism of benzyl alcohol visible by the production of green fluorescent protein (GFP). Microscopic observation of the biofilms, including the use of confocal laser scanning microscopy (CLSM), confirmed that metabolic exchange occurred. In addition, it was observed that the bacteria appear to have a preferred biofilm architecture, with P. putida in the bottom layer, and Acinetobacter at the top.


Subject(s)
Acinetobacter/growth & development , Acinetobacter/metabolism , Biofilms/growth & development , Electrophoresis/methods , Pseudomonas putida/growth & development , Pseudomonas putida/metabolism , Benzyl Alcohol/metabolism , Electrophoresis/instrumentation , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/biosynthesis , Microbial Viability , Microbiological Techniques , Microelectrodes/microbiology , Polyethyleneimine/metabolism , Time Factors
4.
Trends Biotechnol ; 22(8): 417-22, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15283987

ABSTRACT

Tissue engineering involves the creation of multicellular tissues from individual cells. It was previously perceived that tissues were only formed by higher organisms such as plants and animals. However, it is now known that multicellular systems of microorganisms, such as microbial colonies, biofilms, flocs and aggregates, can also show extensive spatial organization. Here, we discuss methods that can be used to spatially organize microorganisms--bacteria, in particular--into tissue-like materials with defined internal architectures. Some potential uses of such "microbial tissues" are covered.


Subject(s)
Apoptosis/physiology , Bacteria/cytology , Biofilms , Plant Cells , Tissue Engineering , Animals , Biosensing Techniques , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...