Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
2.
Genome Biol ; 15(8): R70, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25262759

ABSTRACT

BACKGROUND: Structural rearrangements of the genome resulting in genic imbalance due to copy number change are often deleterious at the organismal level, but are common in immortalized cell lines and tumors, where they may be an advantage to cells. In order to explore the biological consequences of copy number changes in the Drosophila genome, we resequenced the genomes of 19 tissue-culture cell lines and generated RNA-Seq profiles. RESULTS: Our work revealed dramatic duplications and deletions in all cell lines. We found three lines of evidence indicating that copy number changes were due to selection during tissue culture. First, we found that copy numbers correlated to maintain stoichiometric balance in protein complexes and biochemical pathways, consistent with the gene balance hypothesis. Second, while most copy number changes were cell line-specific, we identified some copy number changes shared by many of the independent cell lines. These included dramatic recurrence of increased copy number of the PDGF/VEGF receptor, which is also over-expressed in many cancer cells, and of bantam, an anti-apoptosis miRNA. Third, even when copy number changes seemed distinct between lines, there was strong evidence that they supported a common phenotypic outcome. For example, we found that proto-oncogenes were over-represented in one cell line (S2-DRSC), whereas tumor suppressor genes were under-represented in another (Kc167). CONCLUSION: Our study illustrates how genome structure changes may contribute to selection of cell lines in vitro. This has implications for other cell-level natural selection progressions, including tumorigenesis.


Subject(s)
Cell Line , Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Evolution, Molecular , Gene Dosage , Animals , Cell Survival , DNA/analysis , Drosophila Proteins/genetics , Female , Genetic Fitness , Genetic Variation , Male , MicroRNAs/genetics , Receptor Protein-Tyrosine Kinases/genetics , Selection, Genetic , Sequence Analysis, DNA , Sex Chromosomes/genetics , Tissue Culture Techniques
3.
Genome Res ; 24(7): 1236-50, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24985917

ABSTRACT

We expanded the knowledge base for Drosophila cell line transcriptomes by deeply sequencing their small RNAs. In total, we analyzed more than 1 billion raw reads from 53 libraries across 25 cell lines. We verify reproducibility of biological replicate data sets, determine common and distinct aspects of miRNA expression across cell lines, and infer the global impact of miRNAs on cell line transcriptomes. We next characterize their commonalities and differences in endo-siRNA populations. Interestingly, most cell lines exhibit enhanced TE-siRNA production relative to tissues, suggesting this as a common aspect of cell immortalization. We also broadly extend annotations of cis-NAT-siRNA loci, identifying ones with common expression across diverse cells and tissues, as well as cell-restricted loci. Finally, we characterize small RNAs in a set of ovary-derived cell lines, including somatic cells (OSS and OSC) and a mixed germline/somatic cell population (fGS/OSS) that exhibits ping-pong piRNA signatures. Collectively, the ovary data reveal new genic piRNA loci, including unusual configurations of piRNA-generating regions. Together with the companion analysis of mRNAs described in a previous study, these small RNA data provide comprehensive information on the transcriptional landscape of diverse Drosophila cell lines. These data should encourage broader usage of fly cell lines, beyond the few that are presently in common usage.


Subject(s)
Drosophila/genetics , Genetic Variation , MicroRNAs/genetics , RNA, Small Interfering/genetics , Animals , Base Sequence , Cell Line , Computational Biology/methods , Gene Expression , Genetic Loci , Germ Cells , High-Throughput Nucleotide Sequencing , MicroRNAs/chemistry , Molecular Sequence Annotation , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Small Interfering/chemistry , Sequence Alignment
4.
Int J Bioinform Res Appl ; 10(4-5): 479-97, 2014.
Article in English | MEDLINE | ID: mdl-24989864

ABSTRACT

The Non-Coding RNA (ncRNA) elements in the 3' Untranslated Regions (3'-UTRs) are known to participate in the genes' post-transcriptional regulations. Inferring co-expression patterns of the genes through clustering these 3'-UTR ncRNA elements will provide invaluable insights for studying their biological functions. In this paper, we propose an improved RNA structural clustering pipeline. Benchmark of the new pipeline on Rfam data demonstrates over 10% performance improvements compared to the traditional hierarchical clustering pipeline. By applying the new clustering pipeline to 3'-UTRs of Drosophila melanogaster's genome, we have successfully identified 184 ncRNA clusters with 91.3% accuracy. One of these clusters corresponds to genes that are preferentially expressed in male Drosophila. Another cluster contains genes that are responsible for the functions of septate junction in epithelial cells. These discoveries encourage more studies on novel post-transcriptional regulation mechanisms.


Subject(s)
3' Untranslated Regions , Drosophila melanogaster/genetics , RNA, Untranslated , Algorithms , Animals , Cluster Analysis , Computational Biology/methods , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Gene Expression Profiling/methods , Male , Models, Statistical , Nucleic Acid Conformation , RNA/chemistry , RNA Processing, Post-Transcriptional , Sequence Alignment , Sequence Analysis, RNA
5.
Nature ; 512(7515): 393-9, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-24670639

ABSTRACT

Animal transcriptomes are dynamic, with each cell type, tissue and organ system expressing an ensemble of transcript isoforms that give rise to substantial diversity. Here we have identified new genes, transcripts and proteins using poly(A)+ RNA sequencing from Drosophila melanogaster in cultured cell lines, dissected organ systems and under environmental perturbations. We found that a small set of mostly neural-specific genes has the potential to encode thousands of transcripts each through extensive alternative promoter usage and RNA splicing. The magnitudes of splicing changes are larger between tissues than between developmental stages, and most sex-specific splicing is gonad-specific. Gonads express hundreds of previously unknown coding and long non-coding RNAs (lncRNAs), some of which are antisense to protein-coding genes and produce short regulatory RNAs. Furthermore, previously identified pervasive intergenic transcription occurs primarily within newly identified introns. The fly transcriptome is substantially more complex than previously recognized, with this complexity arising from combinatorial usage of promoters, splice sites and polyadenylation sites.


Subject(s)
Drosophila melanogaster/genetics , Gene Expression Profiling , Transcriptome/genetics , Alternative Splicing/genetics , Animals , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/cytology , Female , Male , Molecular Sequence Annotation , Nerve Tissue/metabolism , Organ Specificity , Poly A/genetics , Polyadenylation , Promoter Regions, Genetic/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sex Characteristics , Stress, Physiological/genetics
6.
Proc Natl Acad Sci U S A ; 109(50): 20526-31, 2012 Dec 11.
Article in English | MEDLINE | ID: mdl-23184999

ABSTRACT

Sex-specific trait expression is frequently associated with highly variable, condition-dependent expression within sexes and rapid divergence among closely related species. Horned beetles are an excellent example for studying the molecular basis of these phenomena because horn morphology varies markedly among species, between sexes, and among alternative, nutritionally-cued morphs within sexes. In addition, horns lack obvious homology to other insect traits and provide a good opportunity to explore the molecular basis of the rapid diversification of a novel trait within and between species. Here we show that the sex-determination gene doublesex (dsx) underlies important aspects of horn development, including differences between sexes, morphs, and species. In male Onthophagus taurus, dsx transcripts were preferentially expressed in the horns of the large, horned morph, and RNAi-mediated knockdown of dsx dramatically altered male horn allometry by massively reducing horn development in large males, but not in smaller males. Conversely, dsx RNAi induced ectopic, nutrition-sensitive horn development in otherwise hornless females. Finally, in a closely related species (Onthophagus sagittarius) that has recently evolved a rare reversed sexual dimorphism, dsx RNAi revealed reversed as well as novel dsx functions despite an overall conservation of dsx expression. This suggests that rapid evolution of dsx functions has facilitated the transition from a regular sexual dimorphism to a reversed sexual dimorphism in this species. Our findings add beetle horns to existing examples of a close relationship between dsx and sexual trait development, and suggest that dsx function has been coopted to facilitate both the evolution of environmentally-cued intrasexual dimorphisms and rapid species divergences in a novel trait.


Subject(s)
Coleoptera/growth & development , Coleoptera/genetics , Horns/growth & development , Amino Acid Sequence , Animal Nutritional Physiological Phenomena , Animals , Base Sequence , Coleoptera/physiology , DNA/genetics , Evolution, Molecular , Female , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Genes, Insect , Male , Molecular Sequence Data , RNA Interference , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Sex Characteristics , Sex Differentiation/genetics , Species Specificity
7.
Cell Rep ; 1(3): 277-89, 2012 Mar 29.
Article in English | MEDLINE | ID: mdl-22685694

ABSTRACT

We analyzed the usage and consequences of alternative cleavage and polyadenylation (APA) in Drosophila melanogaster by using >1 billion reads of stranded mRNA-seq across a variety of dissected tissues. Beyond demonstrating that a majority of fly transcripts are subject to APA, we observed broad trends for 3' untranslated region (UTR) shortening in the testis and lengthening in the central nervous system (CNS); the latter included hundreds of unannotated extensions ranging up to 18 kb. Extensive northern analyses validated the accumulation of full-length neural extended transcripts, and in situ hybridization indicated their spatial restriction to the CNS. Genes encoding RNA binding proteins (RBPs) and transcription factors were preferentially subject to 3' UTR extensions. Motif analysis indicated enrichment of miRNA and RBP sites in the neural extensions, and their termini were enriched in canonical cis elements that promote cleavage and polyadenylation. Altogether, we reveal broad tissue-specific patterns of APA in Drosophila and transcripts with unprecedented 3' UTR length in the nervous system.


Subject(s)
Drosophila melanogaster/genetics , Organ Specificity/genetics , Polyadenylation/genetics , 3' Untranslated Regions/genetics , Animals , Base Sequence , Blotting, Northern , Conserved Sequence/genetics , DNA-Binding Proteins/metabolism , Drosophila melanogaster/embryology , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental , Genes, Insect/genetics , In Situ Hybridization , Male , Molecular Sequence Data , Neurons/cytology , Neurons/metabolism , Nucleotide Motifs/genetics , Poly A/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Sequence Analysis, RNA , Testis/metabolism , Transcriptome/genetics
8.
Genome Biol ; 13(4): r28, 2012 Apr 24.
Article in English | MEDLINE | ID: mdl-22531030

ABSTRACT

BACKGROUND: Gene dosage change is a mild perturbation that is a valuable tool for pathway reconstruction in Drosophila. While it is often assumed that reducing gene dose by half leads to two-fold less expression, there is partial autosomal dosage compensation in Drosophila, which may be mediated by feedback or buffering in expression networks. RESULTS: We profiled expression in engineered flies where gene dose was reduced from two to one. While expression of most one-dose genes was reduced, the gene-specific dose responses were heterogeneous. Expression of two-dose genes that are first-degree neighbors of one-dose genes in novel network models also changed, and the directionality of change depended on the response of one-dose genes. CONCLUSIONS: Our data indicate that expression perturbation propagates in network space. Autosomal compensation, or the lack thereof, is a gene-specific response, largely mediated by interactions with the rest of the transcriptome.


Subject(s)
Dosage Compensation, Genetic , Drosophila/genetics , Gene Regulatory Networks , Genes, Insect , Animals , Animals, Genetically Modified/genetics , Chromosomes, Insect/genetics , Female , Gene Dosage , Genetic Heterogeneity , Male , Oligonucleotide Array Sequence Analysis/methods , Transcriptome , X Chromosome/genetics
9.
BMC Dev Biol ; 12: 4, 2012 Jan 17.
Article in English | MEDLINE | ID: mdl-22252300

ABSTRACT

BACKGROUND: Germline stem cells (GSCs) are present in the gonads of Drosophila females and males, and their proper maintenance, as well as their correct differentiation, is essential for fertility and fecundity. The molecular characterization of factors involved in maintenance and differentiation is a major goal both in Drosophila and stem cell research. While genetic studies have identified many of these key factors, the use of genome-wide expression studies holds the potential to greatly increase our knowledge of these pathways. RESULTS: Here we report a genome-wide expression study that uses laser cutting microdissection to isolate germline stem cells, somatic niche cells, and early differentiating germ cells from female and male gonads. Analysis of this data, in association with two previously published genome-wide GSC data sets, revealed sets of candidate genes as putatively expressed in specific cell populations. Investigation of one of these genes, CG10990 the Drosophila ortholog of mammalian Programmed cell death 4 (Pdcd4), reveals expression in female and male germline stem cells and early differentiating daughter cells. Functional analysis demonstrates that while it is not essential for oogenesis or spermatogenesis, it does function to promote the differentiation of GSCs in females. Furthermore, in females, Pdcd4 genetically interacts with the key differentiation gene bag of marbles (bam) and the stem cell renewal factor eIF4A, suggesting a possible pathway for its function in differentiation. CONCLUSIONS: We propose that Pdcd4 promotes the differentiation of GSC daughter cells by relieving the eIF4A-mediated inhibition of Bam.


Subject(s)
Apoptosis Regulatory Proteins/physiology , Drosophila Proteins/physiology , Drosophila melanogaster/genetics , Gametogenesis/genetics , Gene Expression , Ovary/cytology , RNA-Binding Proteins/physiology , Stem Cells/physiology , Testis/cytology , Amino Acid Sequence , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Epistasis, Genetic , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation , Male , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Ovary/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Sequence Homology, Amino Acid , Stem Cells/metabolism , Testis/metabolism
10.
Proc Natl Acad Sci U S A ; 109(3): 858-63, 2012 Jan 17.
Article in English | MEDLINE | ID: mdl-22215604

ABSTRACT

Although transitions from sexual to asexual reproduction are thought to have important evolutionary consequences, little is known about the mechanistic underpinnings of these changes. The cyclical parthenogen Daphnia pulex is a powerful model in which to address these issues because female-limited meiosis suppression can be transmitted to sexual individuals via males, providing the opportunity for genetic dissection of the trait. A previous study identified genomic regions differentiating obligately asexual females from their sexual counterparts, and a candidate gene within one such region, encoding the meiotic cohesin Rec8, is the subject of this investigation. The D. pulex genome contains three Rec8 loci, all of which are quite polymorphic. However, at one of the loci, all obligately asexual clones carry an allele containing an identical upstream insertion of a transposable element as well as a frameshift mutation, both of which are completely absent from sexual lineages. The low level of variation within the insertion allele across all asexual lineages suggests that this element may be in the process of spreading through the species, and abrogation or modification of Rec8 function is possibly responsible for converting meiotically reproducing lineages into obligate asexuals.


Subject(s)
DNA Transposable Elements/genetics , Daphnia/genetics , Mutagenesis, Insertional/genetics , Nuclear Proteins/genetics , Reproduction, Asexual/genetics , Alleles , Animals , Evolution, Molecular , Female , Genome/genetics , Male , Molecular Sequence Data , Parthenogenesis/genetics , Phylogeny
11.
Evolution ; 65(1): 231-45, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20731717

ABSTRACT

Developmental mechanisms play an important role in determining the costs, limits, and evolutionary consequences of phenotypic plasticity. One issue central to these claims is the hypothesis of developmental decoupling, where alternate morphs result from evolutionarily independent developmental pathways. We address this assumption through a microarray study that tests whether differences in gene expression between alternate morphs are as divergent as those between sexes, a classic example of developmental decoupling. We then examine whether genes with morph-biased expression are less conserved than genes with shared expression between morphs, as predicted if developmental decoupling relaxes pleiotropic constraints on divergence. We focus on the developing horns and brains of two species of horned beetles with impressive sexual- and morph-dimorphism in the expression of horns and fighting behavior. We find that patterns of gene expression were as divergent between morphs as they were between sexes. However, overall patterns of gene expression were also highly correlated across morphs and sexes. Morph-biased genes were more evolutionarily divergent, suggesting a role of relaxed pleiotropic constraints or relaxed selection. Together these results suggest that alternate morphs are to some extent developmentally decoupled, and that this decoupling has significant evolutionary consequences. However, alternative morphs may not be as developmentally decoupled as sometimes assumed and such hypotheses of development should be revisited and refined.


Subject(s)
Coleoptera/anatomy & histology , Coleoptera/genetics , Animals , Biological Evolution , Coleoptera/classification , Coleoptera/growth & development , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Genetic Pleiotropy , Hawaii , Male , Phenotype , Phylogeny , Sex Characteristics , Virginia
12.
Genome Res ; 21(2): 182-92, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21177961

ABSTRACT

Core promoters are critical regions for gene regulation in higher eukaryotes. However, the boundaries of promoter regions, the relative rates of initiation at the transcription start sites (TSSs) distributed within them, and the functional significance of promoter architecture remain poorly understood. We produced a high-resolution map of promoters active in the Drosophila melanogaster embryo by integrating data from three independent and complementary methods: 21 million cap analysis of gene expression (CAGE) tags, 1.2 million RNA ligase mediated rapid amplification of cDNA ends (RLM-RACE) reads, and 50,000 cap-trapped expressed sequence tags (ESTs). We defined 12,454 promoters of 8037 genes. Our analysis indicates that, due to non-promoter-associated RNA background signal, previous studies have likely overestimated the number of promoter-associated CAGE clusters by fivefold. We show that TSS distributions form a complex continuum of shapes, and that promoters active in the embryo and adult have highly similar shapes in 95% of cases. This suggests that these distributions are generally determined by static elements such as local DNA sequence and are not modulated by dynamic signals such as histone modifications. Transcription factor binding motifs are differentially enriched as a function of promoter shape, and peaked promoter shape is correlated with both temporal and spatial regulation of gene expression. Our results contribute to the emerging view that core promoters are functionally diverse and control patterning of gene expression in Drosophila and mammals.


Subject(s)
Computational Biology , Drosophila melanogaster/genetics , Genome, Insect/genetics , Promoter Regions, Genetic , 3' Untranslated Regions/genetics , Animals , Chromosome Mapping , Drosophila melanogaster/embryology , Expressed Sequence Tags , Gene Expression Profiling , Gene Expression Regulation/genetics , Genome-Wide Association Study , Transcription Initiation Site
13.
Genome Res ; 21(2): 301-14, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21177962

ABSTRACT

Drosophila melanogaster cell lines are important resources for cell biologists. Here, we catalog the expression of exons, genes, and unannotated transcriptional signals for 25 lines. Unannotated transcription is substantial (typically 19% of euchromatic signal). Conservatively, we identify 1405 novel transcribed regions; 684 of these appear to be new exons of neighboring, often distant, genes. Sixty-four percent of genes are expressed detectably in at least one line, but only 21% are detected in all lines. Each cell line expresses, on average, 5885 genes, including a common set of 3109. Expression levels vary over several orders of magnitude. Major signaling pathways are well represented: most differentiation pathways are "off" and survival/growth pathways "on." Roughly 50% of the genes expressed by each line are not part of the common set, and these show considerable individuality. Thirty-one percent are expressed at a higher level in at least one cell line than in any single developmental stage, suggesting that each line is enriched for genes characteristic of small sets of cells. Most remarkable is that imaginal disc-derived lines can generally be assigned, on the basis of expression, to small territories within developing discs. These mappings reveal unexpected stability of even fine-grained spatial determination. No two cell lines show identical transcription factor expression. We conclude that each line has retained features of an individual founder cell superimposed on a common "cell line" gene expression pattern.


Subject(s)
Drosophila melanogaster/genetics , Genetic Variation , Transcription, Genetic , Animals , Cell Line , Cluster Analysis , Exons , Female , Gene Expression Profiling , Male , Molecular Sequence Data , Signal Transduction/genetics , Transcription Factors/genetics
14.
Nature ; 471(7339): 473-9, 2011 Mar 24.
Article in English | MEDLINE | ID: mdl-21179090

ABSTRACT

Drosophila melanogaster is one of the most well studied genetic model organisms; nonetheless, its genome still contains unannotated coding and non-coding genes, transcripts, exons and RNA editing sites. Full discovery and annotation are pre-requisites for understanding how the regulation of transcription, splicing and RNA editing directs the development of this complex organism. Here we used RNA-Seq, tiling microarrays and cDNA sequencing to explore the transcriptome in 30 distinct developmental stages. We identified 111,195 new elements, including thousands of genes, coding and non-coding transcripts, exons, splicing and editing events, and inferred protein isoforms that previously eluded discovery using established experimental, prediction and conservation-based approaches. These data substantially expand the number of known transcribed elements in the Drosophila genome and provide a high-resolution view of transcriptome dynamics throughout development.


Subject(s)
Drosophila melanogaster/growth & development , Drosophila melanogaster/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental/genetics , Transcription, Genetic/genetics , Alternative Splicing/genetics , Animals , Base Sequence , Drosophila Proteins/genetics , Drosophila melanogaster/embryology , Exons/genetics , Female , Genes, Insect/genetics , Genome, Insect/genetics , Male , MicroRNAs/genetics , Oligonucleotide Array Sequence Analysis , Protein Isoforms/genetics , RNA Editing/genetics , RNA, Messenger/analysis , RNA, Messenger/genetics , RNA, Small Untranslated/analysis , RNA, Small Untranslated/genetics , Sequence Analysis , Sex Characteristics
15.
BMC Genomics ; 11: 703, 2010 Dec 14.
Article in English | MEDLINE | ID: mdl-21156066

ABSTRACT

BACKGROUND: Horned beetles, in particular in the genus Onthophagus, are important models for studies on sexual selection, biological radiations, the origin of novel traits, developmental plasticity, biocontrol, conservation, and forensic biology. Despite their growing prominence as models for studying both basic and applied questions in biology, little genomic or transcriptomic data are available for this genus. We used massively parallel pyrosequencing (Roche 454-FLX platform) to produce a comprehensive EST dataset for the horned beetle Onthophagus taurus. To maximize sequence diversity, we pooled RNA extracted from a normalized library encompassing diverse developmental stages and both sexes. RESULTS: We used 454 pyrosequencing to sequence ESTs from all post-embryonic stages of O. taurus. Approximately 1.36 million reads assembled into 50,080 non-redundant sequences encompassing a total of 26.5 Mbp. The non-redundant sequences match over half of the genes in Tribolium castaneum, the most closely related species with a sequenced genome. Analyses of Gene Ontology annotations and biochemical pathways indicate that the O. taurus sequences reflect a wide and representative sampling of biological functions and biochemical processes. An analysis of sequence polymorphisms revealed that SNP frequency was negatively related to overall expression level and the number of tissue types in which a given gene is expressed. The most variable genes were enriched for a limited number of GO annotations whereas the least variable genes were enriched for a wide range of GO terms directly related to fitness. CONCLUSIONS: This study provides the first large-scale EST database for horned beetles, a much-needed resource for advancing the study of these organisms. Furthermore, we identified instances of gene duplications and alternative splicing, useful for future study of gene regulation, and a large number of SNP markers that could be used in population-genetic studies of O. taurus and possibly other horned beetles.


Subject(s)
Coleoptera/anatomy & histology , Coleoptera/genetics , Genes, Insect/genetics , Horns , Alternative Splicing/genetics , Animals , Base Sequence , Cluster Analysis , Databases, Genetic , Databases, Protein , Metabolic Networks and Pathways/genetics , Molecular Sequence Annotation , Phylogeny , Polymorphism, Single Nucleotide/genetics , Repetitive Sequences, Nucleic Acid/genetics , Sequence Analysis, DNA
16.
Evol Dev ; 12(5): 449-58, 2010.
Article in English | MEDLINE | ID: mdl-20883214

ABSTRACT

Holometabolous insects provide an excellent opportunity to study both the properties of development as well as their evolution and diversification across taxa. Here we investigate the developmental basis and evolutionary diversification of secondary trait loss during development in the expression of beetle horns, a novel and highly diverse class of secondary sexual traits. In many species, horn growth during late larval development is followed by a period of dramatic remodeling during the pupal stage, including the complete resorption of horns in many cases. Here we show that programed cell death plays an important and dynamic role in the secondary resorption of pupal horn primordia during pupal development. Surprisingly, the degree of cell death mediated horn resorption depended on species, sex, and body region, suggesting the existence of regulatory mechanisms that can diversify quickly over short phylogenetic distances. More generally, our results illustrate that secondary, differential loss of structures during development can be a powerful mechanism for generating considerable morphological diversity both within and between species.


Subject(s)
Apoptosis/physiology , Body Patterning/physiology , Coleoptera/growth & development , Animals , Biological Evolution , Coleoptera/anatomy & histology , Coleoptera/cytology , Female , Male , Pupa/anatomy & histology , Pupa/cytology , Pupa/growth & development , Sex Characteristics , Species Specificity
17.
BMC Biol ; 8: 62, 2010 May 24.
Article in English | MEDLINE | ID: mdl-20529234

ABSTRACT

A recent article in BMC Biology illustrates the use of a systems-biology approach to integrate data across the transcriptome, proteome and metabolome of budding yeast in order to dissect the relationship between nutrient conditions and cell growth.


Subject(s)
Cell Proliferation , Eukaryotic Cells/physiology , Saccharomycetales/growth & development , Systems Biology/methods , Gene Expression Profiling/methods , Metabolic Networks and Pathways/physiology , Nutritional Physiological Phenomena/physiology
18.
BMC Genomics ; 10: 504, 2009 Oct 30.
Article in English | MEDLINE | ID: mdl-19878565

ABSTRACT

BACKGROUND: The origin of novel traits and their subsequent diversification represent central themes in evo-devo and evolutionary ecology. Here we explore the genetic and genomic basis of a class of traits that is both novel and highly diverse, in a group of organisms that is ecologically complex and experimentally tractable: horned beetles. RESULTS: We developed two high quality, normalized cDNA libraries for larval and pupal Onthophagus taurus and sequenced 3,488 ESTs that assembled into 451 contigs and 2,330 singletons. We present the annotation and a comparative analysis of the conservation of the sequences. Microarrays developed from the combined libraries were then used to contrast the transcriptome of developing primordia of head horns, prothoracic horns, and legs. Our experiments identify a first comprehensive list of candidate genes for the evolution and diversification of beetle horns. We find that developing horns and legs show many similarities as well as important differences in their transcription profiles, suggesting that the origin of horns was mediated partly, but not entirely, by the recruitment of genes involved in the formation of more traditional appendages such as legs. Furthermore, we find that horns developing from the head and prothorax differ in their transcription profiles to a degree that suggests that head and prothoracic horns are not serial homologs, but instead may have evolved independently from each other. CONCLUSION: We have laid the foundation for a systematic analysis of the genetic basis of horned beetle development and diversification with the potential to contribute significantly to several major frontiers in evolutionary developmental biology.


Subject(s)
Coleoptera/growth & development , Coleoptera/genetics , Expressed Sequence Tags , Horns/growth & development , Horns/metabolism , Oligonucleotide Array Sequence Analysis , Animals , Coleoptera/anatomy & histology , Female , Gene Expression Profiling , Gene Library , Genome, Insect/genetics , Larva/genetics , Male , Pupa/genetics
19.
Genome Biol ; 10(9): R97, 2009.
Article in English | MEDLINE | ID: mdl-19758432

ABSTRACT

BACKGROUND: Discovering the functions of all genes is a central goal of contemporary biomedical research. Despite considerable effort, we are still far from achieving this goal in any metazoan organism. Collectively, the growing body of high-throughput functional genomics data provides evidence of gene function, but remains difficult to interpret. RESULTS: We constructed the first network of functional relationships for Drosophila melanogaster by integrating most of the available, comprehensive sets of genetic interaction, protein-protein interaction, and microarray expression data. The complete integrated network covers 85% of the currently known genes, which we refined to a high confidence network that includes 20,000 functional relationships among 5,021 genes. An analysis of the network revealed a remarkable concordance with prior knowledge. Using the network, we were able to infer a set of high-confidence Gene Ontology biological process annotations on 483 of the roughly 5,000 previously unannotated genes. We also show that this approach is a means of inferring annotations on a class of genes that cannot be annotated based solely on sequence similarity. Lastly, we demonstrate the utility of the network through reanalyzing gene expression data to both discover clusters of coregulated genes and compile a list of candidate genes related to specific biological processes. CONCLUSIONS: Here we present the the first genome-wide functional gene network in D. melanogaster. The network enables the exploration, mining, and reanalysis of experimental data, as well as the interpretation of new data. The inferred annotations provide testable hypotheses of previously uncharacterized genes.


Subject(s)
Drosophila melanogaster/genetics , Gene Expression Profiling/statistics & numerical data , Gene Regulatory Networks , Protein Interaction Mapping/statistics & numerical data , Algorithms , Animals , Cluster Analysis , Computational Biology , Databases, Genetic , Databases, Protein , Genomics/methods , Oligonucleotide Array Sequence Analysis , Systems Integration
20.
Fly (Austin) ; 2(1): 1-18, 2008.
Article in English | MEDLINE | ID: mdl-18849648

ABSTRACT

Bioinformatics tools can be invaluable resources to Drosophila researchers; however, the sheer number of applications and databases can be overwhelming. We present a broad overview of common bioinformatics tasks and the resources used to do them, with a specific focus on resources for Drosophila. The topics covered include: Genome Databases, Sequence Analysis, Comparative Genomics, Gene Expression Databases and Analysis Tools, Function-Based Data and Analysis, Pathways, Networks, and Interactions; and finally, tools to stay current with resources and literature. We also present a compilation of URLs and short descriptions that correspond to the topics and resources mentioned in this review.


Subject(s)
Computational Biology , Drosophila , Animals , Databases, Genetic , Drosophila/genetics , Drosophila/metabolism , Internet
SELECTION OF CITATIONS
SEARCH DETAIL
...