Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 11915, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31417115

ABSTRACT

Campylobacter jejuni is a microaerophilic foodborne pathogen that is sensitive to stress conditions. However, it is not yet understood how this stress-sensitive pathogen may cause a significant number of cases of human gastroenteritis worldwide. In this study, we examined stress tolerance in 70 C. jejuni strains isolated from retail chicken under several stress conditions related to food safety. Compared to oxygen-sensitive (OS) strains of C. jejuni, C. jejuni strains with increased aerotolerance, such as hyper-aerotolerant (HAT) and aerotolerant (AT) strains, were more tolerant to peracetic acid, refrigeration and freeze-thaw stresses. However, the levels of thermotolerance and hyper-osmotolerance were not associated with the aerotolerance level of C. jejuni. The HAT and AT strains of C. jejuni exhibited significantly increased activities of catalase and superoxide dismutase (SOD), compared to the OS strains. Consistently, the HAT and AT strains were highly tolerant to oxidants, such as hydrogen peroxide, cumene hydroperoxide and menadione, compared to the OS strains. The AT and HAT strains that were tolerant to stresses, particularly peracetic acid and refrigeration, predominantly belonged to multilocus sequence typing (MLST) clonal complex (CC)-21. This study shows that oxidative stress resistance plays a role in determining the differential level of aerotolerance in C. jejuni and that AT and HAT strains of C. jejuni are more tolerant to oxidants and low temperatures than OS strains.


Subject(s)
Adaptation, Physiological , Campylobacter jejuni/isolation & purification , Chickens/microbiology , Food Safety , Stress, Physiological , Adaptation, Physiological/drug effects , Animals , Campylobacter jejuni/classification , Campylobacter jejuni/drug effects , Campylobacter jejuni/enzymology , Catalase/metabolism , Clone Cells , Disinfectants/pharmacology , Drug Resistance, Bacterial/drug effects , Freezing , Hot Temperature , Multilocus Sequence Typing , Osmotic Pressure , Oxidants/toxicity , Peracetic Acid/pharmacology , Reactive Oxygen Species/metabolism , Refrigeration , Stress, Physiological/drug effects , Superoxide Dismutase/metabolism
2.
Methods Mol Biol ; 1849: 267-289, 2018.
Article in English | MEDLINE | ID: mdl-30298260

ABSTRACT

Microbial samples taken from an environment often represent mixtures of communities, where each community is composed of overlapping assemblages of species. Such data represent a serious analytical challenge, as the community structures will be present as complex mixtures, there will be very large numbers of component species, and the species abundance will often be sparse over samples. The structure and complexity of these samples will vary according to both biotic and abiotic factors, and classical methods of data analysis will have a limited value in this setting. A novel Bayesian modeling framework, called BioMiCo, was developed to meet this challenge. BioMiCo takes abundance data derived from environmental DNA, and models each sample by a two-level mixture, where environmental OTUs contribute community structures, and those structures are related to the known biotic and abiotic features of each sample. The model is constrained by Dirichlet priors, which induces compact structures, minimizes variance, and maximizes model interpretability. BioMiCo is trained on a portion of the data, and once trained a BioMiCo model can be employed to make predictions about the features of new samples. This chapter provides a set of protocols that illustrate the application of BioMiCo to real inference problems. Each protocol is designed around the analysis of a real dataset, which was carefully chosen to illustrate specific aspects of real data analysis. With these protocols, users of BioMiCo will be able to undertake basic research into the properties of complex microbial systems, as well as develop predictive models for applied microbiomics.


Subject(s)
Algorithms , Bayes Theorem , Computational Biology/methods , Metagenomics/methods , Microbiota
3.
Front Microbiol ; 9: 1204, 2018.
Article in English | MEDLINE | ID: mdl-29928267

ABSTRACT

Campylobacter is a leading foodborne pathogen worldwide. Biofilm formation is an important survival mechanism that sustains the viability of Campylobacter under harsh stress conditions. Iron affects biofilm formation in some other bacteria; however, the effect of iron on biofilm formation has not been investigated in Campylobacter. In this study, we discovered that ferrous (Fe2+) and ferric (Fe3+) iron stimulated biofilm formation in Campylobacter jejuni. The sequestration of iron with an iron chelator prevented the iron-mediated biofilm stimulation. The level of total reactive oxygen species (ROS) in biofilms was increased by iron. However, the supplementation with an antioxidant prevented the total ROS level from being increased in biofilms by iron and also inhibited iron-mediated biofilm stimulation in C. jejuni. This suggests that iron promotes biofilm formation through oxidative stress. Based on the results of fluorescence microscopic analysis, Fe2+ and Fe3+ enhanced both microcolony formation and biofilm maturation. The levels of extracellular DNA and polysaccharides in biofilms were increased by iron supplementation. The effect of iron on biofilm formation was also investigated with 70 C. jejuni isolates from raw chicken. Regardless of the inherent levels of biofilm formation, iron stimulated biofilm formation in all tested strains; however, there were strain variations in iron concentrations affecting biofilm formation. The biofilm formation of 92.9% (65 of 70) strains was enhanced by either 40 µM Fe2+ or 20 µM Fe3+ or both (the iron concentrations that enhanced biofilm formation in C. jejuni NCTC 11168), whereas different iron concentrations were required to promote biofilms in the rest of the strains. The findings in this study showed that Fe2+ and Fe3+ contributed to the stimulation of biofilm formation in C. jejuni through oxidative stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...