Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(26): 17887-17897, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38914009

ABSTRACT

Amide-based organic cage cavities are, in principle, ideal enzyme active site mimics. Yet, cage-promoted organocatalysis has remained elusive, in large part due to synthetic accessibility of robust and functional scaffolds. Herein, we report the acyl transfer catalysis properties of robust, hexaamide cages in organic solvent. Cage structural variation reveals that esterification catalysis with an acyl anhydride acyl carrier occurs only in bifunctional cages featuring internal pyridine motifs and two crucial antipodal carboxylic acid groups. 1H NMR data and X-ray crystallography show that the acyl carrier is rapidly activated inside the cavity as a covalent mixed-anhydride intermediate with an internal hydrogen bond. Michaelis-Menten (saturation) kinetics suggest weak binding (KM = 0.16 M) of the alcohol pronucleophile close to the internal anhydride. Finally, activation and delivery of the alcohol to the internal anhydride by the second carboxylic acid group forms ester product and releases the cage catalyst. Eyring analysis indicates a strong enthalpic stabilization of the transition state (5.5 kcal/mol) corresponding to a rate acceleration of 104 over background acylation, and an ordered, associative rate-determining attack by the alcohol, supported by DFT calculations. We conclude that internal bifunctional organocatalysis specific to the cage structural design is responsible for the enhancement over the background reaction. These results pave the way for organic-phase enzyme mimicry in self-assembled cavities with the potential for cavity elaboration to enact selective acylations.

2.
Chem Sci ; 15(17): 6536-6543, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38699263

ABSTRACT

Integrating symmetry-reducing methods into self-assembly methodology is desirable to efficiently realise the full potential of molecular cages as hosts and catalysts. Although techniques have been explored for metal organic (coordination) cages, rational strategies to develop low symmetry organic cages remain limited. In this article, we describe rules to program the shape and symmetry of organic cage cavities by designing edge pieces that bias the orientation of the amide linkages. We apply the rules to synthesise cages with well-defined cavities, supported by evidence from crystallography, spectroscopy and modelling. Access to low-symmetry, self-assembled organic cages such as those presented, will widen the current bottleneck preventing study of organic enzyme mimics, and provide synthetic tools for novel functional material design.

3.
Chemistry ; 29(26): e202300063, 2023 May 08.
Article in English | MEDLINE | ID: mdl-36638051

ABSTRACT

Molecular cages are sought after as receptors and catalysts. However, typical dynamic covalent chemistry approaches restrict the shape-persistence, solubility and stability of self-assembled organic cages. As a result, organic cages occupy a narrow chemical and functional space, and solution-phase applications and studies remain rare. We report an in situ trapping protocol, using Pinnick oxidation conditions, to convert soluble metastable imine assemblies to robust amide cages, and exemplify the method to access previously inaccessible organic cages. The new cages are internally functionalised with two constrained and diametrically opposed carboxylic acid groups that can distinguish between functionalised piperazines in THF. We anticipate our approach will broaden access to robust, soluble, self-assembled organic cages of an unsymmetrical or semi-flexible nature, which in turn will drive advances in solution-phase applications of molecular cages.

4.
Chem Sci ; 11(35): 9494-9500, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-34123174

ABSTRACT

We report reductive alkylation reactions of amines using carboxylic acids as nominal electrophiles. The two-step reaction exploits the dual reactivity of phenylsilane and involves a silane-mediated amidation followed by a Zn(OAc)2-catalyzed amide reduction. The reaction is applicable to a wide range of amines and carboxylic acids and has been demonstrated on a large scale (305 mmol of amine). The rate differential between the reduction of tertiary and secondary amide intermediates is exemplified in a convergent synthesis of the antiretroviral medicine maraviroc. Mechanistic studies demonstrate that a residual 0.5 equivalents of carboxylic acid from the amidation step is responsible for the generation of silane reductants with augmented reactivity, which allow secondary amides, previously unreactive in zinc/phenylsilane systems, to be reduced.

5.
Science ; 365(6456): 910-914, 2019 08 30.
Article in English | MEDLINE | ID: mdl-31467220

ABSTRACT

Nucleophilic substitution reactions of alcohols are among the most fundamental and strategically important transformations in organic chemistry. For over half a century, these reactions have been achieved by using stoichiometric, and often hazardous, reagents to activate the otherwise unreactive alcohols. Here, we demonstrate that a specially designed phosphine oxide promotes nucleophilic substitution reactions of primary and secondary alcohols in a redox-neutral catalysis manifold that produces water as the sole by-product. The scope of the catalytic coupling process encompasses a range of acidic pronucleophiles that allow stereospecific construction of carbon-oxygen and carbon-nitrogen bonds.

6.
Nat Commun ; 8: 15913, 2017 06 26.
Article in English | MEDLINE | ID: mdl-28649981

ABSTRACT

Amines are a fundamentally important class of biologically active compounds and the ability to manipulate their physicochemical properties through the introduction of fluorine is of paramount importance in medicinal chemistry. Current synthesis methods for the construction of fluorinated amines rely on air and moisture sensitive reagents that require special handling or harsh reductants that limit functionality. Here we report practical, catalyst-free, reductive trifluoroethylation reactions of free amines exhibiting remarkable functional group tolerance. The reactions proceed in conventional glassware without rigorous exclusion of either moisture or oxygen, and use trifluoroacetic acid as a stable and inexpensive fluorine source. The new methods provide access to a wide range of medicinally relevant functionalized tertiary ß-fluoroalkylamine cores, either through direct trifluoroethylation of secondary amines or via a three-component coupling of primary amines, aldehydes and trifluoroacetic acid. A reduction of in situ-generated silyl ester species is proposed to account for the reductive selectivity observed.

7.
Chem Commun (Camb) ; 53(57): 7982-7985, 2017 Jul 13.
Article in English | MEDLINE | ID: mdl-28537280

ABSTRACT

A revised pathway for the catalytic Staudinger amidation reaction is presented that involves the intervention of in situ-generated silyl esters as the species responsible for amidation.

8.
Chem Commun (Camb) ; 52(9): 1855-8, 2016 Jan 31.
Article in English | MEDLINE | ID: mdl-26669845

ABSTRACT

We report a catalytic reductive alkylation reaction of primary or secondary amines with carboxylic acids. The two-phase process involves silane mediated direct amidation followed by catalytic reduction.

9.
Acta Crystallogr C ; 69(Pt 11): 1207-11, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24192159

ABSTRACT

The identity of the major product of Ru-catalysed alkene metathesis of two polyene substrates has been determined using density functional theory (DFT) NMR prediction, a (1)H-(1)H Total Correlated Spectroscopy (TOCSY) NMR experiment and ultimately by single-crystal X-ray crystallography. The substrates were designed as those that would potentially allow expedient access to the trans-decalin skeleton of the natural product (-)-euonyminol, but the product was found to be a bis-cyclopentenyl-ß-cyanohydrin [1-(1-hydroxycyclopent-3-en-1-yl)cyclopent-3-ene-1-carbonitrile, C11H13NO] rather than the trans-2,3,6,7-dehydrodecalin-ß-cyanohydrin.


Subject(s)
Alkenes/chemistry , Cyclopentanes/chemistry , Nitriles/chemistry , Catalysis , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Molecular Structure
10.
J Org Chem ; 78(22): 11302-17, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24138675

ABSTRACT

The accuracy of both Gauge-including atomic orbital (GIAO) and continuous set of gauge transformations (CSGT) (13)C NMR spectra prediction by Density Functional Theory (DFT) at the B3LYP/6-31G** level is shown to be usefully enhanced by employing a 'fragment referencing' method for predicting chemical shifts without recourse to empirical scaling. Fragment referencing refers to a process of reducing the error in calculating a particular NMR shift by consulting a similar molecule for which the error in the calculation is easily deduced. The absolute accuracy of the chemical shifts predicted when employing fragment referencing relative to conventional techniques (e.g., using TMS or MeOH/benzene dual referencing) is demonstrated to be improved significantly for a range of substrates, which illustrates the superiority of the technique particularly for systems with similar chemical shifts arising from different chemical environments. The technique is particularly suited to molecules of relatively low molecular weight containing 'non-standard' magnetic environments, e.g., α to halogen atoms, which are poorly predicted by other methods. The simplicity and speed of the technique mean that it can be employed to resolve routine structural assignment problems that require a degree of accuracy not provided by standard incremental or hierarchically ordered spherical description of environment (HOSE) algorithms. The approach is also demonstrated to be applicable when employing the MP2 method at 6-31G**, cc-pVDZ, aug-cc-pVDZ, and cc-pVTZ levels, although none of these offer advantage in terms of accuracy of prediction over the B3LYP/6-31G** DFT method.

SELECTION OF CITATIONS
SEARCH DETAIL
...