Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
J Genet Couns ; 2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37864663

ABSTRACT

In the genomic era, the availability of gene panel and whole genome/exome sequencing is rapidly increasing. Opportunities for providing former patients with new genetic information are also increasing over time and recontacting former patients with new information is likely to become more common. Breast cancer Refined Analysis of Sequence Tests-Risk And Penetrance (BRA-STRAP) is an Australian study of individuals who had previously undertaken BRCA1 and BRCA2 genetic testing, with no pathogenic variants detected. Using a waiver of consent, stored DNA samples were retested using a breast/ovarian cancer gene panel and clinically significant results returned to the patient (or next of kin, if deceased). This qualitative study aimed to explore patient experiences, opinions, and expectations of recontacting in the Australian hereditary cancer setting. Participants were familial cancer clinic patients (or next of kin) who were notified of a new pathogenic variant identified via BRA-STRAP. In-depth, semi-structured interviews were conducted approximately 6 weeks post-result. Interviews were transcribed verbatim and analyzed using an inductive thematic approach. Thirty participants (all female; average age = 57; range 36-84) were interviewed. Twenty-five were probands, and five were next of kin. Most women reported initial shock upon being recontacted with unexpected news, after having obtained a sense of closure related to their initial genetic testing experiences and cancer diagnosis. For most, this initial distress was short-lived, followed by a process of readjustment, meaning-making and adaptation that was facilitated by perceived clinical and personal utility of the information. Women were overall satisfied with the waiver of consent approach and recontacting process. Results are in line with previous studies suggesting that patients have positive attitudes about recontacting. Women in this study valued new genetic information gained from retesting and were satisfied with the BRA-STRAP recontact model. Practice implications to facilitate readjustment and promote psychosocial adaptation were identified.

2.
J Med Genet ; 60(3): 265-273, 2023 03.
Article in English | MEDLINE | ID: mdl-36763037

ABSTRACT

BACKGROUND: Ashkenazi Jewish (AJ) people have a higher incidence of BRCA1/2 pathogenic variants (PVs) than unselected populations. Three BRCA-Jewish founder mutations (B-JFMs) comprise >90% of BRCA1/2 PVs in AJ people. Personal/family cancer history-based testing misses ≥50% of people with B-JFM. METHODS: We compared two population-based B-JFM screening programmes in Australia-using (1) an online tool (Sydney) and (2) in-person group sessions (Melbourne). RESULTS: Of 2167 Jewish people tested (Sydney n=594; Melbourne n=1573), 1.3% (n=28) have a B-JFM, only 2 of whom had a significant cancer family history (Manchester score ≥12). Pretest anxiety scores were normal (mean 9.9±3.5 (6-24)), with no significant post-result change (9.5±3.3). Decisional regret (mean 7.4±13.0 (0-100)), test-related distress (mean 0.8+/2.2 (0-30)) and positive experiences (reverse-scored) (mean 3.4±4.5 (1-20)) scores were low, with no significant differences between Sydney and Melbourne participants. Post-education knowledge was good overall (mean 11.8/15 (±2.9)) and significantly higher in Melbourne than Sydney. Post-result knowledge was the same (mean 11.7 (±2.4) vs 11.2 (±2.4)). Participants with a B-JFM had higher post-result anxiety and test-related distress and lower positive experiences, than those without a B-JFM, but scores were within the normal range. Family cancer history did not significantly affect knowledge or anxiety, or pretest perception of B-JFM or cancer risks. Most participants (93%) were satisfied/very satisfied with the programme. CONCLUSION: Both B-JFM screening programmes are highly acceptable to Australian Jewish communities. The programme enabled identification of several individuals who were previously unaware they have a B-JFM, many of whom would have been ineligible for current criteria-based testing in Australia.


Subject(s)
Breast Neoplasms , Neoplasms , Humans , Female , Genetic Testing/methods , Jews/genetics , Genetic Predisposition to Disease , Australia , BRCA1 Protein/genetics , Neoplasms/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Mutation
3.
Eur J Hum Genet ; 31(3): 257-261, 2023 03.
Article in English | MEDLINE | ID: mdl-36631541

ABSTRACT

A Community Genetics carrier screening program for the Jewish community has operated on-site in high schools in Sydney (Australia) for 25 years. During 2020, in response to the COVID-19 pandemic, government-mandated social-distancing, 'lock-down' public health orders, and laboratory supply-chain shortages prevented the usual operation and delivery of the annual testing program. We describe development of three responses to overcome these challenges: (1) pivoting to online education sufficient to ensure informed consent for both genetic and genomic testing; (2) development of contactless telehealth with remote training and supervision for collecting genetic samples using buccal swabs; and (3) a novel patient and specimen identification 'GeneTrustee' protocol enabling fully identified clinical-grade specimens to be collected and DNA extracted by a research laboratory while maintaining full participant confidentiality and privacy. These telehealth strategies for education, consent, specimen collection and sample processing enabled uninterrupted delivery and operation of complex genetic testing and screening programs even amid pandemic restrictions. These tools remain available for future operation and can be adapted to other programs.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics , Specimen Handling/methods , Informed Consent , Genetic Testing
4.
Hum Mutat ; 43(12): 1921-1944, 2022 12.
Article in English | MEDLINE | ID: mdl-35979650

ABSTRACT

Skipping of BRCA2 exon 3 (∆E3) is a naturally occurring splicing event, complicating clinical classification of variants that may alter ∆E3 expression. This study used multiple evidence types to assess pathogenicity of 85 variants in/near BRCA2 exon 3. Bioinformatically predicted spliceogenic variants underwent mRNA splicing analysis using minigenes and/or patient samples. ∆E3 was measured using quantitative analysis. A mouse embryonic stem cell (mESC) based assay was used to determine the impact of 18 variants on mRNA splicing and protein function. For each variant, population frequency, bioinformatic predictions, clinical data, and existing mRNA splicing and functional results were collated. Variant class was assigned using a gene-specific adaptation of ACMG/AMP guidelines, following a recently proposed points-based system. mRNA and mESC analysis combined identified six variants with transcript and/or functional profiles interpreted as loss of function. Cryptic splice site use for acceptor site variants generated a transcript encoding a shorter protein that retains activity. Overall, 69/85 (81%) variants were classified using the points-based approach. Our analysis shows the value of applying gene-specific ACMG/AMP guidelines using a points-based approach and highlights the consideration of cryptic splice site usage to appropriately assign PVS1 code strength.


Subject(s)
Genes, BRCA2 , RNA Splice Sites , Animals , Humans , Mice , Alternative Splicing , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , RNA Splicing , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
J Clin Oncol ; 40(18): 2036-2047, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35263119

ABSTRACT

PURPOSE: Tubo-ovarian cancer (TOC) is a sentinel cancer for BRCA1 and BRCA2 pathogenic variants (PVs). Identification of a PV in the first member of a family at increased genetic risk (the proband) provides opportunities for cancer prevention in other at-risk family members. Although Australian testing rates are now high, PVs in patients with TOC whose diagnosis predated revised testing guidelines might have been missed. We assessed the feasibility of detecting PVs in this population to enable genetic risk reduction in relatives. PATIENTS AND METHODS: In this pilot study, deceased probands were ascertained from research cohort studies, identification by a relative, and gynecologic oncology clinics. DNA was extracted from archival tissue or stored blood for panel sequencing of 10 risk-associated genes. Testing of deceased probands ascertained through clinic records was performed with a consent waiver. RESULTS: We identified 85 PVs in 84 of 787 (11%) probands. Familial contacts of 39 of 60 (65%) deceased probands with an identified recipient (60 of 84; 71%) have received a written notification of results, with follow-up verbal contact made in 85% (33 of 39). A minority of families (n = 4) were already aware of the PV. For many (29 of 33; 88%), the genetic result provided new information and referral to a genetic service was accepted in most cases (66%; 19 of 29). Those who declined referral (4 of 29) were all male next of kin whose family member had died more than 10 years before. CONCLUSION: We overcame ethical and logistic challenges to demonstrate that retrospective genetic testing to identify PVs in previously untested deceased probands with TOC is feasible. Understanding reasons for a family member's decision to accept or decline a referral will be important for guiding future TRACEBACK projects.


Subject(s)
Breast Neoplasms , Ovarian Neoplasms , Australia , Breast Neoplasms/genetics , Carcinoma, Ovarian Epithelial/genetics , Family , Female , Genetic Predisposition to Disease , Genetic Testing/methods , Humans , Male , Ovarian Neoplasms/genetics , Ovarian Neoplasms/prevention & control , Pilot Projects , Retrospective Studies
6.
BMJ Open ; 11(6): e041186, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34172541

ABSTRACT

INTRODUCTION: People of Ashkenazi Jewish (AJ) ancestry are more likely than unselected populations to have a BRCA1/2 pathogenic variant, which cause a significantly increased risk of breast, ovarian and prostate cancer. Three specific BRCA1/2 pathogenic variants, referred to as BRCA-Jewish founder mutations (B-JFM), account for >90% of BRCA1/2 pathogenic variants in people of AJ ancestry. Current practice of identifying eligible individuals for BRCA testing based on personal and/or family history has been shown to miss at least 50% of people who have one of these variants. Here we describe the protocol of the JeneScreen study-a study established to develop and evaluate two different population-based B-JFM screening programmes, offered to people of Jewish ancestry in Sydney and Melbourne, Australia. METHODS AND ANALYSIS: To rmeasure the acceptability of population-based B-JFM screening in Australia, two screening programmes using different methodologies have been developed. The Sydney JeneScreen programme provides information and obtains informed consent by way of an online tool. The Melbourne JeneScreen programme does this by way of community sessions attended in person. Participants complete questionnaires to measure clinical and psychosocial outcomes at baseline, and for those who have testing, 2 weeks postresult. Participants who decline testing are sent a questionnaire regarding reasons for declining. Participants with a B-JFM are sent questionnaires 12-month and 24-month post-testing. The questionnaires incorporate validated scales, which measure anxiety, decisional conflict and regret, and test-related distress and positive experiences, and other items specifically developed or adapted for the study. These measures will be assessed for each programme and the two population-based B-JFM screening methods will be compared. ETHICS AND DISSEMINATION: Institutional Human Research Ethics Committee approval was obtained from the South Eastern Area Health Service Human Research Ethics Committee: HREC Ref 16/125.Following the analysis of the study results, the findings will be disseminated widely through conferences and publications, and directly to participants in writing.


Subject(s)
Breast Neoplasms , Ovarian Neoplasms , Prostatic Neoplasms , Australia , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Genetic Predisposition to Disease , Genetic Testing , Humans , Jews/genetics , Male , Mutation , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics
7.
J Med Genet ; 58(12): 853-858, 2021 12.
Article in English | MEDLINE | ID: mdl-33168572

ABSTRACT

BACKGROUND: The strength of evidence supporting the validity of gene-disease relationships is variable. Hereditary cancer has the additional complexity of low or moderate penetrance for some confirmed disease-associated alleles. METHODS: To promote national consistency in interpretation of hereditary cancer/tumour gene test results, we requested opinions of representatives from Australian Family Cancer Clinics regarding the clinical utility of 157 genes initially collated for a national research project. Viewpoints were sought by initial survey, face-to-face workshop and follow-up survey. Subsequent review was undertaken by the eviQ Cancer Genetics Reference Committee, a national resource providing evidence-based and consensus-driven cancer treatment protocols. RESULTS: Genes were categorised by clinical actionability as: relevant for testing on presentation of common cancer/tumour types (n=45); relevant for testing in the context of specific rare phenotypes (n=74); insufficient clinical utility (n=34) or contentious clinical utility (n=3). Opinions for several genes altered during the study time frame, due to new information. CONCLUSION: Through an iterative process, consensus was achieved on genes with clinical utility for hereditary cancer/tumour conditions in the Australian setting. This study highlighted need for regular review of gene-disease lists, a role assumed in Australia for hereditary cancer/tumour predisposition genes by the eviQ Cancer Genetics Reference Committee.


Subject(s)
Genetic Counseling/methods , Genetic Predisposition to Disease/genetics , Genetic Testing/methods , Molecular Sequence Annotation/methods , Neoplasms/genetics , Australia , Consensus , Family Health , Female , Genetic Association Studies/methods , Germ-Line Mutation , Humans , Male , Medical Oncology/methods , Neoplasms/diagnosis , Pedigree , Tumor Suppressor Proteins/genetics
8.
J Community Genet ; 11(3): 291-302, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31879826

ABSTRACT

Screening programmes for BRCA1/2 Jewish Founder mutations (JFM) in the Jewish community have been advocated internationally. Implementation of these programmes could decrease morbidity and mortality of BRCA1/2 JFM carriers through the uptake of cancer screening strategies and risk-reducing surgery. An online programme offered to the Sydney Jewish community that delivers pre-test information and collects consent for BRCA1/2 JFM testing via a website is currently being evaluated (JeneScreen). Forty-three participants from JeneScreen were invited to participate in a sub-study, of semi-structured pre- and post-result telephone interviews. Eleven participants consented to the sub-study. The interviews explored their experiences regarding the online model of obtaining pre-test genetic information, giving consent and receiving results. Inductive thematic analysis was carried out on the interviews. Overarching themes identified include (1) embracing online testing, (2) the online pre-test experience, (3) the result notification experience, (4) concerns associated with online testing and (5) testing as a responsibility. Overall, participants were highly satisfied with online BRCA1/2 JFM testing, an indication that the a website for pre-test information provision is an acceptable alternative to in-person genetic counselling for BRCA1/2 JFM screening and represents a feasible model for future community screening efforts.

9.
NPJ Breast Cancer ; 5: 38, 2019.
Article in English | MEDLINE | ID: mdl-31700994

ABSTRACT

Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM -/- patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors.

10.
Hum Mutat ; 39(5): 593-620, 2018 05.
Article in English | MEDLINE | ID: mdl-29446198

ABSTRACT

The prevalence and spectrum of germline mutations in BRCA1 and BRCA2 have been reported in single populations, with the majority of reports focused on White in Europe and North America. The Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) has assembled data on 18,435 families with BRCA1 mutations and 11,351 families with BRCA2 mutations ascertained from 69 centers in 49 countries on six continents. This study comprehensively describes the characteristics of the 1,650 unique BRCA1 and 1,731 unique BRCA2 deleterious (disease-associated) mutations identified in the CIMBA database. We observed substantial variation in mutation type and frequency by geographical region and race/ethnicity. In addition to known founder mutations, mutations of relatively high frequency were identified in specific racial/ethnic or geographic groups that may reflect founder mutations and which could be used in targeted (panel) first pass genotyping for specific populations. Knowledge of the population-specific mutational spectrum in BRCA1 and BRCA2 could inform efficient strategies for genetic testing and may justify a more broad-based oncogenetic testing in some populations.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Internationality , Mutation/genetics , Databases, Genetic , Family , Geography , Humans
11.
Article in English | MEDLINE | ID: mdl-29344385

ABSTRACT

BACKGROUND: Gynaecological cancers may be the sentinel malignancy in women who carry a mutation in BRCA1 or 2, a mis-match repair gene causing Lynch Syndrome or other genes. Despite published guidelines for referral to a genetics service, a substantial number of women do not attend for the recommended genetic assessment. The study aims to determine the outcomes of systematic follow-up of patients diagnosed with ovarian or endometrial cancer from Gynaecologic-oncology multidisciplinary meetings who were deemed appropriate for genetics assessment. METHODS: Women newly diagnosed with gynaecological cancer at the Royal Hospital for Women between 2010 and 2014 (cohort1) and 2015-2016 (cohort 2) who were identified as suitable for genetics assessment were checked against the New South Wales/Australian Capital Territory genetic database. The doctors of non-attenders were contacted regarding suitability for re-referral, and patients who were still suitable for genetics assessment were contacted by mail. Attendance was again checked against the genetics database. RESULTS: Among 462 patients in cohort 1, flagged for genetic assessment, 167 had not consulted a genetic service at initial audit conducted in 2014. 86 (18.6%) women whose referral was pending clarification of family history and/or immunohistochemistry did not require further genetic assessment. Letters were sent to 40 women. 7 women (1.5%) attended hereditary cancer clinic in the following 6 months.The audit conducted in 2016 identified 148 patients (cohort 2) appropriate for genetic assessment at diagnosis. 66 (44.6%) had been seen by a genetics service, 51 (34.5%) whose referral was pending additional information did not require further genetic assessment. Letters were sent to 15 women, of whom 9 (6.1%) attended genetics within 6 months. CONCLUSIONS: To improve the effectiveness of guidelines for the genetic referral of women newly diagnosed with ovarian cancer, clinicians need to obtain a thorough family history at diagnosis; arrange for reflex MMR IHC according to guidelines; offer BRCA or panel testing to all women with non-mucinous ovarian cancer prior to discharge and systematically follow up all women referred to genetics at the post-op visit.

13.
Article in English | MEDLINE | ID: mdl-28936272

ABSTRACT

BACKGROUND: Endometrial, ovarian and breast cancers are paradigms for global health disparity. Women living in the developing world continue to present in later stages of disease and have fewer options for treatment than those in developed countries. Risk reducing surgery is of proven benefit for women at high risk of gynaecological cancer. There is no specific model for identification and management of such women in the developing world. METHODS: We have integrated data from our published audit of a major gynaecological oncology centre at Royal Hospital for Women in Australia, with data from our survey and a focus group discussion of Nepalese gynaecological health care professionals regarding genetic testing, and findings from the literature. These data have been used to identify current barriers to multidisciplinary gynaecological oncology care in developing nations, and to develop a model to integrate hereditary cancer services into cancer care in Nepal, as a paradigm for other developing nations. RESULTS: The ability to identify women with hereditary gynaecological cancer in developing nations is influenced by their late presentation (if active management is declined or not appropriate), limited access to specialised services and cultural and financial barriers. In order to include genetic assessment in multidisciplinary gynaecological cancer care, education needs to be provided to all levels of health care providers to enable reporting of family history, and appropriate ordering of investigations. Training of genetic counsellors is needed to assist in the interpretation of results and extending care to unaffected at-risk relatives. Novel approaches will be required to overcome geographic and financial barriers, including mainstreaming of genetic testing, telephone counselling, use of mouth swabs and utilisation of international laboratories. CONCLUSION: Women in Nepal have yet to receive benefits from the advances in early cancer diagnosis and management. There is a potential of extending the benefits of hereditary cancer diagnosis in Nepal due to the rapid fall in the cost of genetic testing and the ability to collect DNA from a buccal swab through appropriate training of the gynaecological carers.

15.
Genome Med ; 9(1): 41, 2017 04 28.
Article in English | MEDLINE | ID: mdl-28454591

ABSTRACT

BACKGROUND: The return of research results (RoR) remains a complex and well-debated issue. Despite the debate, actual data related to the experience of giving individual results back, and the impact these results may have on clinical care and health outcomes, is sorely lacking. Through the work of the Australian Pancreatic Cancer Genome Initiative (APGI) we: (1) delineate the pathway back to the patient where actionable research data were identified; and (2) report the clinical utilisation of individual results returned. Using this experience, we discuss barriers and opportunities associated with a comprehensive process of RoR in large-scale genomic research that may be useful for others developing their own policies. METHODS: We performed whole-genome (n = 184) and exome (n = 208) sequencing of matched tumour-normal DNA pairs from 392 patients with sporadic pancreatic cancer (PC) as part of the APGI. We identified pathogenic germline mutations in candidate genes (n = 130) with established predisposition to PC or medium-high penetrance genes with well-defined cancer associated syndromes or phenotypes. Variants from candidate genes were annotated and classified according to international guidelines. Variants were considered actionable if clinical utility was established, with regard to prevention, diagnosis, prognostication and/or therapy. RESULTS: A total of 48,904 germline variants were identified, with 2356 unique variants undergoing annotation and in silico classification. Twenty cases were deemed actionable and were returned via previously described RoR framework, representing an actionable finding rate of 5.1%. Overall, 1.78% of our cohort experienced clinical benefit from RoR. CONCLUSION: Returning research results within the context of large-scale genomics research is a labour-intensive, highly variable, complex operation. Results that warrant action are not infrequent, but the prevalence of those who experience a clinical difference as a result of returning individual results is currently low.


Subject(s)
Genetic Predisposition to Disease , Genome, Human , Germ-Line Mutation , Pancreatic Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Australia , Computer Simulation , DNA Mutational Analysis , Genomics , Humans , Middle Aged
16.
Article in English | MEDLINE | ID: mdl-28254144

ABSTRACT

Mutations in BRCA1 and BRCA2 account for hereditary breast and ovarian cancer syndrome in a majority of families and 14% of epithelial ovarian cancer cases. Despite next-generation sequencing, other identified genes (Lynch Syndrome, RAD51C, RAD51D, and BRIP1) account for only a small proportion of cases. The risk of ovarian cancer by age 70 is approximately 40% for BRCA1 and 18% for BRCA2. Most of these cancers are high-grade serous cancers that predominantly arise in the fimbriae of the fallopian tube. Ovarian screening does not improve outcomes, so women at high risk are recommended to undergo risk-reducing salpingo-oophorectomy around the age of 40, followed by hormone replacement therapy (HRT). Specimens should be carefully examined for occult malignancy. Mutation carriers may benefit from newly developed poly ADP ribose polymerase inhibitors. Genetic testing should only be performed after careful counseling, particularly if testing involves the testing of panels of genes that may identify unsuspected disease predisposition or confusing variants of uncertain significance.


Subject(s)
Genes, BRCA2 , Genetic Predisposition to Disease , Ovarian Neoplasms/genetics , Risk Assessment , Breast Neoplasms , Female , Genetic Testing , Humans , Mutation , Ovarian Neoplasms/prevention & control , Ovarian Neoplasms/surgery , Ovariectomy
17.
Fam Cancer ; 16(1): 17-28, 2017 01.
Article in English | MEDLINE | ID: mdl-27480161

ABSTRACT

About 2.5 % of the Ashkenazi-Jewish population carry one of three "founder" mutations in BRCA1 and BRCA2 (BRCA1/2). Currently, testing is offered to Jewish people with a personal and/or family history of breast and/or ovarian cancer; however less than half of BRCA1/2 carriers within the Jewish population are aware of their family history. Population-based testing in other countries has shown to greatly increase the number of mutation carriers identified, compared to targeted testing of people with a family history. We aimed to assess the Australian Jewish community's attitudes towards such a program, including acceptability and interest in having education and testing offered online. Members of Sydney-based Jewish organisations who self-identified as being Jewish were invited by e-mail to participate in an online survey. Of 370 individuals who completed the survey, 96.8 % supported a Jewish community-based BRCA1/2 testing program, and 65.6 % reported being personally interested in undergoing the test. Younger adults aged below 50 years were more interested in undergoing the test than those aged 50 years and above. Almost half (42.9 %) were aware of a family member with breast and/or ovarian cancer; however, of these, 77.1 % had not yet undergone testing. Sixty-five (65.1 %) percent were satisfied with providing consent online, while only 39.6 % of participants' first preference for method of information provision was online. Given the high level of support, and interest in a community testing program, the development and evaluation of a cost-effective and interactive, online BRCA1/2 community testing program appears warranted.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Genetic Testing , Health Knowledge, Attitudes, Practice , Adolescent , Adult , Aged , Aged, 80 and over , Australia , Breast Neoplasms/genetics , Female , Genetic Predisposition to Disease , Humans , Jews/genetics , Male , Middle Aged , Ovarian Neoplasms/genetics , Pedigree , Residence Characteristics , Young Adult
18.
Article in English | MEDLINE | ID: mdl-27980798

ABSTRACT

BACKGROUND: Genetic testing for an inherited susceptibility to cancer is an emerging technology in medical practice. Little information is currently available about physicians' attitudes towards these tests in developing countries. METHODS: We conducted an email survey of Nepalese physicians practicing in academic and non-academic settings in Nepal, regarding knowledge, attitudes and perception towards genetic testing for gynaecologic cancer. RESULTS: Responses were received from 251 of 387 practitioners (65%). Only 46% of all respondents felt prepared to answer patients' questions about genetic testing for gynaecologic cancer, despite 80% reporting that patients had asked questions about genetic testing, and 55% being asked more than 5 times in the past year. 42% reported more than 10 of their patients having had genetic testing for cancer, the majority for BRCA1/2. Access (40%), cost (37%) and lack of physicians' information (24%) were cited as the main barriers to testing. The most commonly identified concerns regarding genetic testing were the potential for increased patient anxiety, misinterpretation of results by patients, and maintaining confidentiality of results (64%, 47% and 38% of respondents respectively). CONCLUSION: This study shows the gap among the health care providers in developing countries and the available modern scientific tools and skills in regard to the benefits of genetic testing for gynaecological cancers in a developing nation. These findings indicate the need for the introduction of further genetic counselling education and support into gynaecological care in Nepal.

SELECTION OF CITATIONS
SEARCH DETAIL
...