Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 90(4): 2756-2764, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29360341

ABSTRACT

Mass spectrometry of intact proteins and protein complexes has the potential to provide a transformative level of information on biological systems, ranging from sequence and post-translational modification analysis to the structures of whole protein assemblies. This ambitious goal requires the efficient fragmentation of both intact proteins and the macromolecular, multicomponent machines they collaborate to create through noncovalent interactions. Improving technologies in an effort to achieve such fragmentation remains perhaps the greatest challenge facing current efforts to comprehensively analyze cellular protein composition and is essential to realizing the full potential of proteomics. In this work, we describe the use of a trimethyl pyrylium (TMP) fixed-charge covalent labeling strategy aimed at enhancing fragmentation for challenging intact proteins and intact protein complexes. Combining analysis of TMP-modified and unmodified protein complexes results in a greater diversity of regions within the protein that give rise to fragments, and results in an up to 2.5-fold increase in sequence coverage when compared to unmodified protein alone, for protein complexes up to 148 kDa. TMP modification offers a simple and powerful platform to expand the capabilities of existing mass spectrometric instrumentation for the complete characterization of intact protein assemblies.


Subject(s)
Alcohol Dehydrogenase/chemistry , Avidin/chemistry , Ovalbumin/chemistry , Pyrans/chemistry , Animals , Chickens , Mass Spectrometry , Molecular Structure , Saccharomyces cerevisiae/enzymology
2.
Tumour Biol ; 37(10): 13903-13914, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27488115

ABSTRACT

The first known function of Ku70 is as a DNA repair factor in the nucleus. Using neuronal neuroblastoma cells as a model, we have established that cytosolic Ku70 binds to the pro-apoptotic protein Bax in the cytosol and blocks Bax's cell death activity. Ku70-Bax binding is regulated by Ku70 acetylation in that when Ku70 is acetylated Bax dissociates from Ku70, triggering cell death. We propose that Ku70 may act as a survival factor in these cells such that Ku70 depletion triggers Bax-dependent cell death. Here, we addressed two fundamental questions about this model: (1) Does all Bax, which is a cytosolic protein, bind to all cytosolic Ku70? and (2) Is Ku70 a survival factor in cells types other than neuronal neuroblastoma cells? We show here that, in neuronal neuroblastoma cells, only a small fraction of Ku70 binds to a small fraction of Bax; most Bax is monomeric. Interestingly, there is no free or monomeric Ku70 in the cytosol; most cytosolic Ku70 is in complex with other factors forming several high molecular weight complexes. A fraction of cytosolic Ku70 also binds to cytosolic Ku80, Ku70's binding partner in the nucleus. Ku70 may not be a survival factor in some cell types (Ku70-depletion less sensitive) because Ku70 depletion does not affect survival of these cells. These results indicate that, in addition to Ku70 acetylation, other factors may be involved in regulating Ku70-Bax binding in the Ku70-depletion less sensitive cells because Ku70 acetylation in these cells is not sufficient to dissociate Bax from Ku70 or to activate Bax.


Subject(s)
Apoptosis , Cytosol/metabolism , Gene Expression Regulation, Neoplastic , Ku Autoantigen/metabolism , Neuroblastoma/pathology , Ovarian Neoplasms/pathology , bcl-2-Associated X Protein/metabolism , Acetylation , Blotting, Western , Cell Proliferation , Female , Humans , Immunoprecipitation , Ku Autoantigen/antagonists & inhibitors , Ku Autoantigen/genetics , Neuroblastoma/metabolism , Ovarian Neoplasms/metabolism , RNA, Small Interfering/genetics , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...