Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Radiol Exp ; 8(1): 72, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38740707

ABSTRACT

Overall quality of radiomics research has been reported as low in literature, which constitutes a major challenge to improve. Consistent, transparent, and accurate reporting is critical, which can be accomplished with systematic use of reporting guidelines. The CheckList for EvaluAtion of Radiomics research (CLEAR) was previously developed to assist authors in reporting their radiomic research and to assist reviewers in their evaluation. To take full advantage of CLEAR, further explanation and elaboration of each item, as well as literature examples, may be useful. The main goal of this work, Explanation and Elaboration with Examples for CLEAR (CLEAR-E3), is to improve CLEAR's usability and dissemination. In this international collaborative effort, members of the European Society of Medical Imaging Informatics-Radiomics Auditing Group searched radiomics literature to identify representative reporting examples for each CLEAR item. At least two examples, demonstrating optimal reporting, were presented for each item. All examples were selected from open-access articles, allowing users to easily consult the corresponding full-text articles. In addition to these, each CLEAR item's explanation was further expanded and elaborated. For easier access, the resulting document is available at https://radiomic.github.io/CLEAR-E3/ . As a complementary effort to CLEAR, we anticipate that this initiative will assist authors in reporting their radiomics research with greater ease and transparency, as well as editors and reviewers in reviewing manuscripts.Relevance statement Along with the original CLEAR checklist, CLEAR-E3 is expected to provide a more in-depth understanding of the CLEAR items, as well as concrete examples for reporting and evaluating radiomic research.Key points• As a complementary effort to CLEAR, this international collaborative effort aims to assist authors in reporting their radiomics research, as well as editors and reviewers in reviewing radiomics manuscripts.• Based on positive examples from the literature selected by the EuSoMII Radiomics Auditing Group, each CLEAR item explanation was further elaborated in CLEAR-E3.• The resulting explanation and elaboration document with examples can be accessed at  https://radiomic.github.io/CLEAR-E3/ .


Subject(s)
Checklist , Humans , Europe , Radiology/standards , Diagnostic Imaging/standards , Radiomics
2.
Int J Med Inform ; 188: 105476, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38743996

ABSTRACT

BACKGROUND: Improved survival of patients after acute coronary syndromes, population growth, and overall life expectancy rise have led to a significant increase in the proportion of patients with stable coronary artery disease (CAD), creating a significant load on the entire healthcare system. The disease often progresses with the development of many complications while significantly increasing the likelihood of hospitalization. Developing and applying a machine learning model for predicting hospitalizations of patients with CAD to an inpatient medical facility will allow for close monitoring of high-risk patients, early preventive interventions, and optimized medical care. AIMS: Development and external validation of personalized models for predicting the preventable hospitalizations of patients with stable CAD and its complications using ML algorithms and data of real-world clinical practice. METHODS: 135,873 depersonalized electronic health records of 49,103 patients with stable CAD were included in the study. Anthropometric measurements, physical examination results, laboratory, instrumental, anamnestic, and socio-demographic data, widely used in routine medical practice, were considered as potential predictors, a total of 73 features. Logistic regression, decision tree-based methods including gradient boosting (AdaBoost, LightGBM, XGBoost, CatBoost) and bagging (RandomForest and ExtraTrees), discriminant analysis (LinearDiscriminant, QuadraticDiscriminant), and naive Bayes classifier were compared. External validation was performed on the data of a separate region. RESULTS: The best results and stability to external validation data were shown by the CatBoost model with an AUC of 0.875 (95% CI 0.865-0.885) for the internal testing and 0.872 (95% CI 0.856-0.886) for the external validation. The best model showed good performance evaluated through AUROC, Brier score and standardized net benefit (for the target NPV threshold) for the validation dataset that was only slightly similar to the train data. CONCLUSION: The metrics of the best model were superior to previously published studies. The results of external validation demonstrated the relative stability of the model to new data from another region that confirms the possibility of the model's application in real clinical practice.

3.
Insights Imaging ; 15(1): 8, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38228979

ABSTRACT

PURPOSE: To propose a new quality scoring tool, METhodological RadiomICs Score (METRICS), to assess and improve research quality of radiomics studies. METHODS: We conducted an online modified Delphi study with a group of international experts. It was performed in three consecutive stages: Stage#1, item preparation; Stage#2, panel discussion among EuSoMII Auditing Group members to identify the items to be voted; and Stage#3, four rounds of the modified Delphi exercise by panelists to determine the items eligible for the METRICS and their weights. The consensus threshold was 75%. Based on the median ranks derived from expert panel opinion and their rank-sum based conversion to importance scores, the category and item weights were calculated. RESULT: In total, 59 panelists from 19 countries participated in selection and ranking of the items and categories. Final METRICS tool included 30 items within 9 categories. According to their weights, the categories were in descending order of importance: study design, imaging data, image processing and feature extraction, metrics and comparison, testing, feature processing, preparation for modeling, segmentation, and open science. A web application and a repository were developed to streamline the calculation of the METRICS score and to collect feedback from the radiomics community. CONCLUSION: In this work, we developed a scoring tool for assessing the methodological quality of the radiomics research, with a large international panel and a modified Delphi protocol. With its conditional format to cover methodological variations, it provides a well-constructed framework for the key methodological concepts to assess the quality of radiomic research papers. CRITICAL RELEVANCE STATEMENT: A quality assessment tool, METhodological RadiomICs Score (METRICS), is made available by a large group of international domain experts, with transparent methodology, aiming at evaluating and improving research quality in radiomics and machine learning. KEY POINTS: • A methodological scoring tool, METRICS, was developed for assessing the quality of radiomics research, with a large international expert panel and a modified Delphi protocol. • The proposed scoring tool presents expert opinion-based importance weights of categories and items with a transparent methodology for the first time. • METRICS accounts for varying use cases, from handcrafted radiomics to entirely deep learning-based pipelines. • A web application has been developed to help with the calculation of the METRICS score ( https://metricsscore.github.io/metrics/METRICS.html ) and a repository created to collect feedback from the radiomics community ( https://github.com/metricsscore/metrics ).

4.
MAGMA ; 34(6): 929-938, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34181118

ABSTRACT

OBJECTIVE: To comparatively assess the performance of highly selective pulses computed with the SLR algorithm in fast-spin echo (FSE) within the current radiofrequency safety limits using a metamaterial-based coil for wrist magnetic resonance imaging. METHODS: Apodized SINC pulses commonly used for clinical FSE sequences were considered as a reference. Selective SLR pulses with a time-bandwidth product of four were constructed in the MATPULSE program. Slice selection profiles in conventional T1-weighted and PD-weighted FSE wrist imaging pulse sequences were modeled using a Bloch equations simulator. Signal evolution was assessed in three samples with relaxation times equivalent to those in musculoskeletal tissues at 1.5T. Regular and SLR-based FSE pulse sequences were tested in a phantom experiment in a multi-slice mode with different gaps between slices and the direct saturation effect was investigated. RESULTS: As compared to the regular FSEs with a conventional transmit coil, combining the utilization of the metadevice with SLR-based FSEs provided a 23 times lower energy deposition in a duty cycle. When the slice gap was decreased from 100 to 0%, the "slice cross-talk" effect reduced the signal intensity by 15.9-17.6% in the SLR-based and by 22.9-32.3% in the regular T1-weighted FSE; and by 0.0-6.4% in the SLR-based and by 0.3-9.3% in the regular PD-weighted FSE. DISCUSSION AND CONCLUSION: SLR-based FSE together with the metadevice allowed to increase the slice selectivity while still being within the safe SAR limits. The "slice cross-talk" effects were conditioned by the number of echoes in the echo train, the repetition time, and T1 relaxation times. The approach was more beneficial for T1-weighted SLR-based FSE as compared to PD-weighted. The combination of the metadevice and SLR-based FSE offers a promising alternative for MR investigations that require scanning in a "Low-SAR" regime such as those for children, pregnant women, and patients with implanted devices.


Subject(s)
Algorithms , Magnetic Resonance Imaging , Child , Female , Humans , Phantoms, Imaging , Pregnancy , Radio Waves , Silanes
SELECTION OF CITATIONS
SEARCH DETAIL
...