Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(52): e2312665120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38109537

ABSTRACT

Hydrogen hydrates are among the basic constituents of our solar system's outer planets, some of their moons, as well Neptune-like exo-planets. The details of their high-pressure phases and their thermodynamic conditions of formation and stability are fundamental information for establishing the presence of hydrogen hydrates in the interior of those celestial bodies, for example, against the presence of the pure components (water ice and molecular hydrogen). Here, we report a synthesis path and experimental observation, by X-ray diffraction and Raman spectroscopy measurements, of the most H[Formula: see text]-dense phase of hydrogen hydrate so far reported, namely the compound 3 (or C[Formula: see text]). The detailed characterisation of this hydrogen-filled ice, based on the crystal structure of cubic ice I (ice I[Formula: see text]), is performed by comparing the experimental observations with first-principles calculations based on density functional theory and the stochastic self-consistent harmonic approximation. We observe that the extreme (up to 90 GPa and likely beyond) pressure stability of this hydrate phase is due to the close-packed geometry of the hydrogen molecules caged in the ice I[Formula: see text] skeleton.

2.
Nanoscale ; 10(14): 6393-6401, 2018 Apr 05.
Article in English | MEDLINE | ID: mdl-29560979

ABSTRACT

All inorganic CsPbX3 (X = Cl, Br, I) nanocrystals (NCs) belong to the novel class of confined metal-halide perovskites which are currently arousing enthusiasm and stimulating huge activity across several fields of optoelectronics due to outstanding properties. A deep knowledge of the band-edge excitonic properties of these materials is thus crucial to further optimize their performances. Here, high-resolution photoluminescence (PL) spectroscopy of single bromide-based NCs reveals the exciton fine structure in the form of sharp peaks that are linearly polarized and grouped in doublets or triplets, which directly mirror the adopted crystalline structure, tetragonal (D4h symmetry) or orthorhombic (D2h symmetry). Intelligible equations are found that show how the fundamental parameters (spin-orbit coupling, ΔSO, crystal field term, T, and electron-hole exchange energy, J) rule the energy spacings in doublets and triplets. From experimental data, fine estimations of each parameter are obtained. The analysis of the absorption spectra of an ensemble of NCs with a "quasi-bulk" behavior leads to ΔSO = 1.20 ± 0.06 eV and T = -0.34 ± 0.05 eV in CsPbBr3. The study of individual luminescence responses of NCs having sizes comparable to the exciton Bohr diameter, 7 nm, allows us to estimate the value of J to be around ≈3 meV in both tetragonal and orthorhombic phases. This value is already enhanced by confinement.

SELECTION OF CITATIONS
SEARCH DETAIL
...