Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
2.
J Hum Evol ; 79: 45-54, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25523037

ABSTRACT

Humans first arrived on Madagascar only a few thousand years ago. Subsequent habitat destruction and hunting activities have had significant impacts on the island's biodiversity, including the extinction of megafauna. For example, we know of 17 recently extinct 'subfossil' lemur species, all of which were substantially larger (body mass ∼11-160 kg) than any living population of the ∼100 extant lemur species (largest body mass ∼6.8 kg). We used ancient DNA and genomic methods to study subfossil lemur extinction biology and update our understanding of extant lemur conservation risk factors by i) reconstructing a comprehensive phylogeny of extinct and extant lemurs, and ii) testing whether low genetic diversity is associated with body size and extinction risk. We recovered complete or near-complete mitochondrial genomes from five subfossil lemur taxa, and generated sequence data from population samples of two extinct and eight extant lemur species. Phylogenetic comparisons resolved prior taxonomic uncertainties and confirmed that the extinct subfossil species did not comprise a single clade. Genetic diversity estimates for the two sampled extinct species were relatively low, suggesting small historical population sizes. Low genetic diversity and small population sizes are both risk factors that would have rendered giant lemurs especially susceptible to extinction. Surprisingly, among the extant lemurs, we did not observe a relationship between body size and genetic diversity. The decoupling of these variables suggests that risk factors other than body size may have as much or more meaning for establishing future lemur conservation priorities.


Subject(s)
Body Size , Extinction, Biological , Genomics/methods , Lemur , Paleontology/methods , Animals , Body Size/genetics , Body Size/physiology , DNA/analysis , DNA/genetics , Fossils , Lemur/classification , Lemur/genetics , Lemur/physiology , Madagascar , Phylogeny
3.
Nature ; 515(7528): 512-7, 2014 Nov 27.
Article in English | MEDLINE | ID: mdl-25383528

ABSTRACT

Previously known only from isolated teeth and lower jaw fragments recovered from the Cretaceous and Palaeogene of the Southern Hemisphere, the Gondwanatheria constitute the most poorly known of all major mammaliaform radiations. Here we report the discovery of the first skull material of a gondwanatherian, a complete and well-preserved cranium from Upper Cretaceous strata in Madagascar that we assign to a new genus and species. Phylogenetic analysis strongly supports its placement within Gondwanatheria, which are recognized as monophyletic and closely related to multituberculates, an evolutionarily successful clade of Mesozoic mammals known almost exclusively from the Northern Hemisphere. The new taxon is the largest known mammaliaform from the Mesozoic of Gondwana. Its craniofacial anatomy reveals that it was herbivorous, large-eyed and agile, with well-developed high-frequency hearing and a keen sense of smell. The cranium exhibits a mosaic of primitive and derived features, the disparity of which is extreme and probably reflective of a long evolutionary history in geographic isolation.


Subject(s)
Fossils , Mammals , Phylogeny , Skull/anatomy & histology , Animals , Herbivory , Mosaicism , Species Specificity , Tooth/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...