Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Genet Med ; : 101081, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38293907

ABSTRACT

PURPOSE: Progressive inherited retinal degenerations (IRDs) affecting rods and cones are clinically and genetically heterogeneous and can lead to blindness with limited therapeutic options. The major gene defects have been identified in subjects of European and Asian descent with only few reports of North African descent. METHODS: Genome, targeted next-generation, and Sanger sequencing was applied to cohort of ∼4000 IRDs cases. Expression analyses were performed including Chip-seq database analyses, on human-derived retinal organoids (ROs), retinal pigment epithelium cells, and zebrafish. Variants' pathogenicity was accessed using 3D-modeling and/or ROs. RESULTS: Here, we identified a novel gene defect with three distinct pathogenic variants in UBAP1L in 4 independent autosomal recessive IRD cases from Tunisia. UBAP1L is expressed in the retinal pigment epithelium and retina, specifically in rods and cones, in line with the phenotype. It encodes Ubiquitin-associated protein 1-like, containing a solenoid of overlapping ubiquitin-associated domain, predicted to interact with ubiquitin. In silico and in vitro studies, including 3D-modeling and ROs revealed that the solenoid of overlapping ubiquitin-associated domain is truncated and thus ubiquitin binding most likely abolished secondary to all variants identified herein. CONCLUSION: Biallelic UBAP1L variants are a novel cause of IRDs, most likely enriched in the North African population.

2.
Proc Natl Acad Sci U S A ; 120(14): e2215997120, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36976766

ABSTRACT

The cell envelope of gram-negative bacteria constitutes the first protective barrier between a cell and its environment. During host infection, the bacterial envelope is subjected to several stresses, including those induced by reactive oxygen species (ROS) and reactive chlorine species (RCS) produced by immune cells. Among RCS, N-chlorotaurine (N-ChT), which results from the reaction between hypochlorous acid and taurine, is a powerful and less diffusible oxidant. Here, using a genetic approach, we demonstrate that Salmonella Typhimurium uses the CpxRA two-component system to detect N-ChT oxidative stress. Moreover, we show that periplasmic methionine sulfoxide reductase (MsrP) is part of the Cpx regulon. Our findings demonstrate that MsrP is required to cope with N-ChT stress by repairing N-ChT-oxidized proteins in the bacterial envelope. By characterizing the molecular signal that induces Cpx when S. Typhimurium is exposed to N-ChT, we show that N-ChT triggers Cpx in an NlpE-dependent manner. Thus, our work establishes a direct link between N-ChT oxidative stress and the envelope stress response.


Subject(s)
Bacterial Proteins , Salmonella typhimurium , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Taurine/pharmacology , Hypochlorous Acid/metabolism , Gene Expression Regulation, Bacterial
3.
Int J Mol Sci ; 23(12)2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35743034

ABSTRACT

Inherited retinal diseases (IRD) are a group of heterogeneous disorders, most of which lead to blindness with limited therapeutic options. Pathogenic variants in RBP4, coding for a major blood carrier of retinol, retinol-binding protein 4, are responsible for a peculiar form of IRD. The aim of this study was to investigate if retinal function of an RBP4-related IRD patient can be improved by retinol administration. Our patient presented a peculiar white-dot retinopathy, reminiscent of vitamin A deficient retinopathy. Using a customized next generation sequencing (NGS) IRD panel we discovered a novel loss-of-function homozygous pathogenic variant in RBP4: c.255G >A, p.(Trp85*). Western blotting revealed the absence of RBP4 protein in the patient's serum. Blood retinol levels were undetectable. The patient was put on a high-dose oral retinol regimen (50,000 UI twice a week). Subjective symptoms and retinal function markedly and sustainably improved at 5-months and 1-year follow-up. Here we show that this novel IRD case can be treated by oral retinol administration.


Subject(s)
Retinal Dystrophies , Vitamin A , Humans , Retina/metabolism , Retinal Dystrophies/drug therapy , Retinal Dystrophies/genetics , Retinol-Binding Proteins, Plasma/genetics , Retinol-Binding Proteins, Plasma/metabolism , Vitamin A/therapeutic use
4.
J Bacteriol ; 204(2): e0044921, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34898261

ABSTRACT

Two-component systems (TCS) are signaling pathways that allow bacterial cells to sense, respond to, and adapt to fluctuating environments. Among the classical TCS of Escherichia coli, HprSR has recently been shown to be involved in the regulation of msrPQ, which encodes the periplasmic methionine sulfoxide reductase system. In this study, we demonstrated that hypochlorous acid (HOCl) induces the expression of msrPQ in an HprSR-dependent manner, whereas H2O2, NO, and paraquat (a superoxide generator) do not. Therefore, HprS appears to be an HOCl-sensing histidine kinase. Using a directed mutagenesis approach, we showed that Met residues located in the periplasmic loop of HprS are important for its activity: we provide evidence that as HOCl preferentially oxidizes Met residues, HprS could be activated via the reversible oxidation of its methionine residues, meaning that MsrPQ plays a role in switching HprSR off. We propose that the activation of HprS by HOCl could occur through a Met redox switch. HprSR appears to be the first characterized TCS able to detect reactive chlorine species (RCS) in E. coli. This study represents an important step toward understanding the mechanisms of RCS resistance in prokaryotes. IMPORTANCE Understanding how bacteria respond to oxidative stress at the molecular level is crucial in the fight against pathogens. HOCl is one of the most potent industrial and physiological microbicidal oxidants. Therefore, bacteria have developed counterstrategies to survive HOCl-induced stress. Over the last decade, important insights into these bacterial protection factors have been obtained. Our work establishes HprSR as a reactive chlorine species-sensing, two-component system in Escherichia coli MG1655, which regulates the expression of msrPQ, two genes encoding, a repair system for HOCl-oxidized proteins. Moreover, we provide evidence suggesting that HOCl could activate HprS through a methionine redox switch.


Subject(s)
Chlorine/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Oxidative Stress/physiology , Bacterial Proteins/classification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/chemistry , Escherichia coli/drug effects , Hydrogen Peroxide/pharmacology , Hypochlorous Acid/pharmacology , Nitric Oxide/pharmacology , Oxidation-Reduction , Oxidative Stress/drug effects , Phosphoenolpyruvate Sugar Phosphotransferase System/classification , Phosphoenolpyruvate Sugar Phosphotransferase System/genetics , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Signal Transduction
5.
Int J Mol Sci ; 22(15)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34360642

ABSTRACT

The purpose of this work was to identify the gene defect underlying a relatively mild rod-cone dystrophy (RCD), lacking disease-causing variants in known genes implicated in inherited retinal disorders (IRD), and provide transcriptomic and immunolocalization data to highlight the best candidate. The DNA of the female patient originating from a consanguineous family revealed no large duplication or deletion, but several large homozygous regions. In one of these, a homozygous frameshift variant, c.244_246delins17 p.(Trp82Valfs*4); predicted to lead to a nonfunctional protein, was identified in CCDC51. CCDC51 encodes the mitochondrial coiled-coil domain containing 51 protein, also called MITOK. MITOK ablation causes mitochondrial dysfunction. Here we show for the first time that CCDC51/MITOK localizes in the retina and more specifically in the inner segments of the photoreceptors, well known to contain mitochondria. Mitochondrial proteins have previously been implicated in IRD, although usually in association with syndromic disease, unlike our present case. Together, our findings add another ultra-rare mutation implicated in non-syndromic IRD, whose pathogenic mechanism in the retina needs to be further elucidated.


Subject(s)
Cone-Rod Dystrophies/pathology , Genes, Recessive , Mitochondrial Proteins/genetics , Mutation , Potassium Channels/genetics , Adult , Cone-Rod Dystrophies/etiology , Cone-Rod Dystrophies/metabolism , Female , Humans , Male , Pedigree , Phenotype
6.
Int J Mol Sci ; 22(12)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203883

ABSTRACT

Variants of the TTLL5 gene, which encodes tubulin tyrosine ligase-like family member five, are a rare cause of cone dystrophy (COD) or cone-rod dystrophy (CORD). To date, only a few TTLL5 patients have been clinically and genetically described. In this study, we report five patients harbouring biallelic variants of TTLL5. Four adult patients presented either COD or CORD with onset in the late teenage years. The youngest patient had a phenotype of early onset severe retinal dystrophy (EOSRD). Genetic analysis was performed by targeted next generation sequencing of gene panels and assessment of copy number variants (CNV). We identified eight variants, of which six were novel, including two large multiexon deletions in patients with COD or CORD, while the EOSRD patient harboured the novel homozygous p.(Trp640*) variant and three distinct USH2A variants, which might explain the observed rod involvement. Our study highlights the role of TTLL5 in COD/CORD and the importance of large deletions. These findings suggest that COD or CORD patients lacking variants in known genes may harbour CNVs to be discovered in TTLL5, previously undetected by classical sequencing methods. In addition, variable phenotypes in TTLL5-associated patients might be due to the presence of additional gene defects.


Subject(s)
Carrier Proteins/genetics , Cone-Rod Dystrophies/genetics , Eye Diseases, Hereditary/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Mutation/genetics , Retinal Dystrophies/genetics , Adult , Aged , Child , Chromosome Breakpoints , Computer Simulation , Cone-Rod Dystrophies/physiopathology , DNA Copy Number Variations/genetics , Electroretinography , Eye Diseases, Hereditary/physiopathology , Female , Genotype , Humans , Male , Middle Aged , Phenotype , Retinal Dystrophies/physiopathology
7.
Hum Mutat ; 42(4): 323-341, 2021 04.
Article in English | MEDLINE | ID: mdl-33538369

ABSTRACT

Choroideremia is an X-linked inherited retinal disorder (IRD) characterized by the degeneration of retinal pigment epithelium, photoreceptors, choriocapillaris and choroid affecting males with variable phenotypes in female carriers. Unlike other IRD, characterized by a large clinical and genetic heterogeneity, choroideremia shows a specific phenotype with causative mutations in only one gene, CHM. Ongoing gene replacement trials raise further interests in this disorder. We describe here the clinical and genetic data from a French cohort of 45 families, 25 of which carry novel variants, in the context of 822 previously reported choroideremia families. Most of the variants represent loss-of-function mutations with eleven families having large (i.e. ≥6 kb) genomic deletions, 18 small insertions, deletions or insertion deletions, six showing nonsense variants, eight splice site variants and two missense variants likely to affect splicing. Similarly, 822 previously published families carry mostly loss-of-function variants. Recurrent variants are observed worldwide, some of which linked to a common ancestor, others arisen independently in specific CHM regions prone to mutations. Since all exons of CHM may harbor variants, Sanger sequencing combined with quantitative polymerase chain reaction or multiplex ligation-dependent probe amplification experiments are efficient to achieve the molecular diagnosis in patients with typical choroideremia features.


Subject(s)
Adaptor Proteins, Signal Transducing , Choroideremia , Adaptor Proteins, Signal Transducing/genetics , Choroideremia/diagnosis , Choroideremia/genetics , Choroideremia/therapy , Exons , Female , Heterozygote , Humans , Male , Mutation
8.
JAMA Ophthalmol ; 139(3): 278-291, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33507216

ABSTRACT

Importance: Biallelic variants in CLN3 lead to a spectrum of diseases, ranging from severe neurodegeneration with retinal involvement (juvenile neuronal ceroid lipofuscinosis) to retina-restricted conditions. Objective: To provide a detailed description of the retinal phenotype of patients with isolated retinal degeneration harboring biallelic CLN3 pathogenic variants and to attempt a phenotype-genotype correlation associated with this gene defect. Design, Setting, and Participants: This retrospective cohort study included patients carrying biallelic CLN3 variants extracted from a cohort of patients with inherited retinal disorders (IRDs) investigated at the National Reference Center for Rare Ocular Diseases of the Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts from December 2007 to August 2020. Data were analyzed from October 2019 to August 2020. Main Outcome and Measures: Functional (best-corrected visual acuity, visual field, color vision, and full-field electroretinogram), morphological (multimodal retinal imaging), and clinical data from patients were collected and analyzed. Gene defect was identified by either next-generation sequencing or whole-exome sequencing and confirmed by Sanger sequencing, quantitative polymerase chain reaction, and cosegregation analysis. Results: Of 1533 included patients, 843 (55.0%) were women and 690 (45.0%) were men. A total of 15 cases from 11 unrelated families harboring biallelic CLN3 variants were identified. All patients presented with nonsyndromic IRD. Two distinct patterns of retinal disease could be identified: a mild rod-cone degeneration of middle-age onset (n = 6; legal blindness threshold reached by 70s) and a severe retinal degeneration with early macular atrophic changes (n = 9; legal blindness threshold reached by 40s). Eleven distinct pathogenic variants were detected, of which 4 were novel. All but 1, p.(Arg405Trp), CLN3 point variants and their genotypic associations were clearly distinct between juvenile neuronal ceroid lipofuscinosis and retina-restricted disease. Mild and severe forms of retina-restricted CLN3-linked IRDs also had different genetic background. Conclusions and Relevance: These findings suggest CLN3 should be included in next-generation sequencing panels when investigating patients with nonsyndromic rod-cone dystrophy. These results document phenotype-genotype correlations associated with specific variants in CLN3. However, caution seems warranted regarding the potential neurological outcome if a pathogenic variant in CLN3 is detected in a case of presumed isolated IRD for the onset of neurological symptoms could be delayed.


Subject(s)
DNA/genetics , Membrane Glycoproteins/genetics , Molecular Chaperones/genetics , Mutation , Retinitis Pigmentosa/genetics , Tomography, Optical Coherence/methods , Visual Acuity , Adult , Aged , DNA Mutational Analysis , Electroretinography , Female , France/epidemiology , Genetic Association Studies , Genotype , Humans , Male , Membrane Glycoproteins/metabolism , Middle Aged , Molecular Chaperones/metabolism , Neuronal Ceroid-Lipofuscinoses , Pedigree , Phenotype , Retinitis Pigmentosa/epidemiology , Retinitis Pigmentosa/metabolism , Retrospective Studies , Exome Sequencing , Young Adult
9.
Free Radic Biol Med ; 160: 506-512, 2020 11 20.
Article in English | MEDLINE | ID: mdl-32750406

ABSTRACT

The oxidation of free methionine (Met) and Met residues inside proteins leads to the formation of methionine sulfoxide (Met-O). The reduction of Met-O to Met is catalysed by a ubiquitous enzyme family: the methionine sulfoxide reductases (Msr). The importance of Msr systems in bacterial physiology and virulence has been reported in many species. Salmonella Typhimurium, a facultative intracellular pathogen, contains four cytoplasmic Msr. Recently, a periplasmic Msr enzyme (MsrP) has been identified in Escherichia coli. In the present study, the STM14_4072 gene from Salmonella was shown to encode the MsrP protein (StMsrP). We describe the experimental procedure and precautions for the production of this molybdo-enzyme. StMsrP was also demonstrated to reduce free Met-O and to catalyse the complete repair of an oxidized protein. More importantly, this study provides for the first time access to the exhaustive list of the Msr systems of a pathogen, including four cytoplasmic enzymes (MsrA, MsrB, MsrC, BisC) and one periplasmic enzyme (MsrP).


Subject(s)
Methionine Sulfoxide Reductases , Salmonella typhimurium , Escherichia coli/genetics , Escherichia coli/metabolism , Methionine/metabolism , Methionine Sulfoxide Reductases/genetics , Methionine Sulfoxide Reductases/metabolism , Oxidation-Reduction , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism
10.
Retina ; 40(8): 1603-1615, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31479088

ABSTRACT

PURPOSE: To document the rod-cone dystrophy phenotype of patients with Usher syndrome type 1 (USH1) harboring MYO7A mutations. METHODS: Retrospective cohort study of 53 patients (42 families) with biallelic MYO7A mutations who underwent comprehensive examination, including functional visual tests and multimodal retinal imaging. Genetic analysis was performed either using a multiplex amplicon panel or through direct sequencing. Data were analyzed with IBM SPSS Statistics software v. 21.0. RESULTS: Fifty different genetic variations including 4 novel were identified. Most patients showed a typical rod-cone dystrophy phenotype, with best-corrected visual acuity and central visual field deteriorating linearly with age. At age 29, binocular visual field demonstrated an average preservation of 50 central degrees, constricting by 50% within 5 years. Structural changes based on spectral domain optical coherence tomography, short wavelength autofluorescence, and near-infrared autofluorescence measurements did not however correlate with age. Our study revealed a higher percentage of epiretinal membranes and cystoid macular edema in patients with MYO7A mutations compared with rod-cone dystrophy patients with other mutations. Subgroup analyses did not reveal substantial genotype-phenotype correlations. CONCLUSION: To the best of our knowledge, this is the largest French cohort of patients with MYO7A mutations reported to date. Functional visual characteristics of this subset of patients followed a linear decline as in other typical rod-cone dystrophy, but structural changes were variable indicating the need for a case-by-case evaluation for prognostic prediction and choice of potential therapies.


Subject(s)
Cone-Rod Dystrophies/genetics , Mutation , Myosin VIIa/genetics , Usher Syndromes/genetics , Adolescent , Adult , Child , Child, Preschool , Cone-Rod Dystrophies/diagnosis , Cone-Rod Dystrophies/physiopathology , DNA Mutational Analysis , Electroretinography , Female , France , Genetic Association Studies , Humans , Infant , Male , Middle Aged , Pedigree , Phenotype , Polymerase Chain Reaction , Retrospective Studies , Tomography, Optical Coherence , Usher Syndromes/diagnosis , Usher Syndromes/physiopathology , Visual Acuity/physiology , Visual Field Tests , Visual Fields/physiology , Young Adult
11.
Invest Ophthalmol Vis Sci ; 60(15): 4951-4957, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31790517

ABSTRACT

Purpose: To evaluate the correlation between the quantification of peripapillary sparing and electroretinogram (ERG) outcomes in autosomal recessive Stargardt disease (STGD1). Methods: Near infrared fundus autofluorescence (NIR-FAF) images of 101 eyes of 101 patients were retrospectively reviewed. Peripapillary sparing was assessed both qualitatively and quantitatively. The area of spared tissue (AST) was calculated in a 1-mm-wide ring around the optic disc after binarization of the 55° NIR-FAF. These measurements were correlated with the presence of normal ERG (group I), abnormal photopic responses (group II), or abnormal photopic and scotopic responses (group III). Results: AST showed significant correlations with ERG groups (R = -0.802, P < 0.001). While qualitative assessment of peripapillary sparing (i.e., present or not) also showed a significant correlation with ERG groups (R = -0.435, P < 0.001), it was weaker than by AST quantification. The ordinal regression analysis showed that the increase in AST was associated with a decrease in the odds of belonging to ERG groups II and III, with an odds ratio of 0.82 (95% confidence interval [CI] 0.78-0.87), P < 0.001. Conclusions: The AST around the optic disc in eyes with STGD1 correlates with the impairment of photoreceptors as shown in the ERG. If replicated in future longitudinal studies, the quantification of peripapillary sparing may prove to be a useful parameter for evaluating the visual prognosis of these eyes.


Subject(s)
Electroretinography/methods , Fluorescein Angiography/methods , Fovea Centralis/pathology , Retinal Pigment Epithelium/pathology , Stargardt Disease/diagnosis , Tomography, Optical Coherence/methods , Visual Acuity , Adolescent , Adult , Female , Fovea Centralis/physiopathology , Fundus Oculi , Humans , Male , Optic Disk , Reproducibility of Results , Retinal Pigment Epithelium/physiopathology , Retrospective Studies , Stargardt Disease/physiopathology , Young Adult
12.
Int J Mol Sci ; 20(20)2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31614660

ABSTRACT

We investigated the prevalence of reported deep-intronic variants in a French cohort of 70 patients with Stargardt disease harboring a monoallelic pathogenic variant on the exonic regions of ABCA4. Direct Sanger sequencing of selected intronic regions of ABCA4 was conducted. Complete phenotypic analysis and correlation with the genotype was performed in case a known intronic pathogenic variant was identified. All other variants found on the analyzed sequences were queried for minor allele frequency and possible pathogenicity by in silico predictions. The second mutated allele was found in 14 (20%) subjects. The three known deep-intronic variants found were c.5196+1137G>A in intron 36 (6 subjects), c.4539+2064C>T in intron 30 (4 subjects) and c.4253+43G>A in intron 28 (4 subjects). Even though the phenotype depends on the compound effect of the biallelic variants, a genotype-phenotype correlation suggests that the c.5196+1137G>A was mostly associated with a mild phenotype and the c.4539+2064C>T with a more severe one. A variable effect was instead associated with the variant c.4253+43G>A. In addition, two novel variants, c.768+508A>G and c.859-245_859-243delinsTGA never associated with Stargardt disease before, were identified and a possible splice defect was predicted in silico. Our study calls for a larger cohort analysis including targeted locus sequencing and 3D protein modeling to better understand phenotype-genotype correlations associated with deep-intronic changes and patients' selection for clinical trials.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Mutation , Sequence Analysis, DNA/methods , Stargardt Disease/genetics , Adult , Aged , Computer Simulation , Female , France , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Introns , Male , Middle Aged , Phenotype , Prevalence , Retrospective Studies , Young Adult
13.
Am J Ophthalmol ; 208: 429-437, 2019 12.
Article in English | MEDLINE | ID: mdl-31465755

ABSTRACT

PURPOSE: To describe outer retinal structure in patients with Best vitelliform macular dystrophy (BVMD) using spectral-domain optical coherence tomography (OCT) and correlate these results with best-corrected visual acuity (BCVA) and patient age. DESIGN: Retrospective cross-sectional study. METHODS: Patients with molecularly confirmed BVMD were compared with normal control subjects (NCs). A complete clinical evaluation was performed, including BCVA, fundus photography, spectral-domain OCT, and fundus autofluorescence. Spectral-domain OCT images were analyzed to determine the stage of the lesion, the central macular thickness (CMT), the foveal outer nuclear layer (ONL) thickness, and tomographic structural changes. RESULTS: Forty-two patients with BVMD (42 eyes) with a molecular diagnosis and 42 NCs (42 eyes) were included. Clinical stages (Gass clinical classification) were distributed as follows: 4.8% for stage 1, 23.8% for stage 2, 16.6% for stage 3, 45.2% for stage 4, and 9.5% for stage 5. The presence of subretinal fluid and vitelliform material was noted in 76% and 79% of the BVMD eyes examined, respectively, and was not associated with BCVA modification (P = .758 and P = .968, respectively). The median ONL thickness was significantly lower compared with the NCs (P < .001). BCVA was significantly correlated with stage (R = 0.710; P < .01), age (R = 0.448; P < .01), CMT (R = -0.411; P < .01), and ONL thickness (R = -0.620; P < .01). The disruption of the external limiting membrane and the ellipsoid zone was associated with a decreased BCVA (P < .001 for both). Among the 32 eyes with subretinal detachment, photoreceptor outer segment length was significantly correlated with BCVA (R = -0.467; P < .01) and ONL thickness (R = 0.444; P = < .01). CONCLUSION: This study shows the correlation between BCVA, age, and spectral-domain OCT features in patients with BVMD. ONL thickness as well as photoreceptor outer segment length are relevant functional correlates and outcome measures to follow photoreceptor impairments and disease progression.


Subject(s)
Retina/pathology , Visual Acuity/physiology , Vitelliform Macular Dystrophy/physiopathology , Adult , Aged , Bestrophins/genetics , Cross-Sectional Studies , DNA Mutational Analysis , Female , Humans , Male , Middle Aged , Retina/diagnostic imaging , Retinal Pigment Epithelium/pathology , Retrospective Studies , Tomography, Optical Coherence , Vitelliform Macular Dystrophy/diagnostic imaging , Vitelliform Macular Dystrophy/genetics
14.
Hum Mutat ; 40(6): 765-787, 2019 06.
Article in English | MEDLINE | ID: mdl-30825406

ABSTRACT

Inherited retinal disorders (IRD) represent clinically and genetically heterogeneous diseases. To date, pathogenic variants have been identified in ~260 genes. Albeit that many genes are implicated in IRD, for 30-50% of the cases, the gene defect is unknown. These cases may be explained by novel gene defects, by overlooked structural variants, by variants in intronic, promoter or more distant regulatory regions, and represent synonymous variants of known genes contributing to the dysfunction of the respective proteins. Patients with one subgroup of IRD, namely incomplete congenital stationary night blindness (icCSNB), show a very specific phenotype. The major cause of this condition is the presence of a hemizygous pathogenic variant in CACNA1F. A comprehensive study applying direct Sanger sequencing of the gene-coding regions, exome and genome sequencing applied to a large cohort of patients with a clinical diagnosis of icCSNB revealed indeed that seven of the 189 CACNA1F-related cases have intronic and synonymous disease-causing variants leading to missplicing as validated by minigene approaches. These findings highlight that gene-locus sequencing may be a very efficient method in detecting disease-causing variants in clinically well-characterized patients with a diagnosis of IRD, like icCSNB.


Subject(s)
Calcium Channels, L-Type/genetics , Eye Diseases, Hereditary/genetics , Genetic Diseases, X-Linked/genetics , Mutation , Myopia/genetics , Night Blindness/genetics , Sequence Analysis, DNA/methods , Genetic Predisposition to Disease , Hemizygote , Humans , Introns , Male , Pedigree , RNA Splicing , Silent Mutation
15.
Clin Genet ; 95(2): 329-333, 2019 02.
Article in English | MEDLINE | ID: mdl-30267408

ABSTRACT

Genetic investigations were performed in three brothers from a consanguineous union, the two oldest diagnosed with rod-cone dystrophy (RCD), the youngest with early-onset cone-rod dystrophy and the two youngest with nephrotic-range proteinuria. Targeted next-generation sequencing did not identify homozygous pathogenic variant in the oldest brother. Whole exome sequencing (WES) applied to the family identified compound heterozygous variants in CC2D2A (c.2774G>C p.(Arg925Pro); c.4730_4731delinsTGTATA p.(Ala1577Valfs*5)) in the three brothers with a homozygous deletion in CNGA3 (c.1235_1236del p.(Glu412Valfs*6)) in the youngest correcting his diagnosis to achromatopsia plus RCD. None of the three subjects had cerebral abnormalities or learning disabilities inconsistent with Meckel-Gruber and Joubert syndromes, usually associated with CC2D2A mutations. Interestingly, an African woman with RCD shared the CC2D2A missense variant (c.2774G>C p.(Arg925Pro); with c.3182+355_3825del p.(?)). The two youngest also carried compound heterozygous variants in CUBN (c.7906C>T rs137998687 p.(Arg2636*); c.10344C>G p.(Cys3448Trp)) that may explain their nephrotic-range proteinuria. Our study identifies for the first time CC2D2A mutations in isolated RCD and underlines the power of WES to decipher complex phenotypes.


Subject(s)
Cone-Rod Dystrophies/diagnosis , Cone-Rod Dystrophies/genetics , Cytoskeletal Proteins/genetics , Exome Sequencing , Genetic Predisposition to Disease , Mutation , Phenotype , Alleles , Amino Acid Substitution , DNA Mutational Analysis , Female , Genetic Association Studies , Genotype , Humans , Pedigree , Young Adult
16.
Int J Mol Sci ; 19(8)2018 Jul 27.
Article in English | MEDLINE | ID: mdl-30060493

ABSTRACT

Here we report novel mutations in ABCA4 with the underlying phenotype in a large French cohort with autosomal recessive Stargardt disease. The DNA samples of 397 index subjects were analyzed in exons and flanking intronic regions of ABCA4 (NM_000350.2) by microarray analysis and direct Sanger sequencing. At the end of the screening, at least two likely pathogenic mutations were found in 302 patients (76.1%) while 95 remained unsolved: 40 (10.1%) with no variants identified, 52 (13.1%) with one heterozygous mutation, and 3 (0.7%) with at least one variant of uncertain significance (VUS). Sixty-three novel variants were identified in the cohort. Three of them were variants of uncertain significance. The other 60 mutations were classified as likely pathogenic or pathogenic, and were identified in 61 patients (15.4%). The majority of those were missense (55%) followed by frameshift and nonsense (30%), intronic (11.7%) variants, and in-frame deletions (3.3%). Only patients with variants never reported in literature were further analyzed herein. Recruited subjects underwent complete ophthalmic examination including best corrected visual acuity, kinetic and static perimetry, color vision test, full-field and multifocal electroretinography, color fundus photography, short-wavelength and near-infrared fundus autofluorescence imaging, and spectral domain optical coherence tomography. Clinical evaluation of each subject confirms the tendency that truncating mutations lead to a more severe phenotype with electroretinogram (ERG) impairment (p = 0.002) and an earlier age of onset (p = 0.037). Our study further expands the mutation spectrum in the exonic and flanking regions of ABCA4 underlying Stargardt disease.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Genetic Association Studies , Macular Degeneration/congenital , ATP-Binding Cassette Transporters/blood , Adolescent , Adult , Codon, Nonsense , Cohort Studies , Computer Simulation , Electroretinography , Exons , Female , France/epidemiology , Heterozygote , Humans , Longitudinal Studies , Macular Degeneration/blood , Macular Degeneration/epidemiology , Macular Degeneration/genetics , Male , Middle Aged , Mutation, Missense , Phenotype , Stargardt Disease , Tomography, Optical Coherence
17.
Ophthalmology ; 125(10): 1587-1596, 2018 10.
Article in English | MEDLINE | ID: mdl-29739629

ABSTRACT

PURPOSE: To analyze the retinal structure in patients with X-linked retinoschisis (XLRS) using spectral-domain OCT and to correlate the morphologic findings with visual acuity, electroretinographic results, and patient age. DESIGN: Retrospective, observational study. PARTICIPANTS: Data from 52 consecutive male patients with molecularly confirmed XLRS were collected retrospectively. METHODS: Complete clinical evaluation included best-corrected visual acuity, full-field electroretinography, fundus photography, spectral-domain OCT, and fundus autofluorescence. Spectral-domain OCT images were analyzed to determine full thickness of the retina and tomographic structural changes. MAIN OUTCOME MEASURES: Relationships between age, OCT, and visual acuity were assessed. RESULTS: One hundred four eyes of 52 patients were included. The mean age at inclusion was 24±15 years (range, 3-57 years). The best-corrected visual acuity ranged from no light perception to 0.1 logarithm of the minimum angle of resolution (mean, 0.6±0.38 logarithm of the minimum angle of resolution). Macular schisis was found in 88% of eyes and macular atrophy was found in 11% of eyes, whereas peripheral schisis was present in 30% of eyes. A spoke-wheel pattern of high and low intensity was the most frequently observed fundus autofluorescence abnormality (51/94 eyes [54%]). The b-to-a amplitude ratio on bright-flash dark-adapted electroretinography was reduced significantly in 45 of 64 eyes (70%). Spectral-domain OCT was available for 97 eyes and showed foveoschisis in 76 of 97 eyes (78%), parafoveal schisis in 10 of 97 eyes (10%), and foveal atrophy in 11 of 97 eyes (11%). Mean central macular thickness (CMT) was of 373.6±140 µm. Cystoid changes were localized mainly in the inner nuclear layer (85/97 eyes [88%]). Qualitative defects in photoreceptor structures were found in most eyes (79/97 eyes [81%]), and the most frequent abnormality was an interruption of the photoreceptor cell outer segment tips (79/79 eyes [100%]). Older age correlated well with lower CMT (correlation coefficient [CC], -0.44; P < 0.001) and with lower photoreceptor outer segment (PROS) length (CC, -0.42; P < 0.001). Lower visual acuity correlated strongly with lower PROS length (CC, -0.53; P < 0.001). CONCLUSIONS: This study underlined the wide variety of clinical features of XLRS. It highlighted the correlation between visual acuity, patient age, and OCT features, emphasizing the relevance of the latter as potential outcome measure in clinical trials.


Subject(s)
Eye Proteins/genetics , Fluorescein Angiography/methods , Mutation, Missense , Retinal Pigment Epithelium/pathology , Retinoschisis/genetics , Tomography, Optical Coherence/methods , Visual Acuity , Adolescent , Adult , Child , Child, Preschool , DNA/genetics , DNA Mutational Analysis , Electroretinography , Eye Proteins/metabolism , France/epidemiology , Fundus Oculi , Humans , Incidence , Male , Middle Aged , Phenotype , Retinal Pigment Epithelium/metabolism , Retinoschisis/diagnosis , Retinoschisis/epidemiology , Retrospective Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...