Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
J Chem Phys ; 141(4): 044908, 2014 Jul 28.
Article in English | MEDLINE | ID: mdl-25084957

ABSTRACT

We report a theoretical study of stochastic processes modeling the growth of first-order Markov copolymers, as well as the reversed reaction of depolymerization. These processes are ruled by kinetic equations describing both the attachment and detachment of monomers. Exact solutions are obtained for these kinetic equations in the steady regimes of multicomponent copolymerization and depolymerization. Thermodynamic equilibrium is identified as the state at which the growth velocity is vanishing on average and where detailed balance is satisfied. Away from equilibrium, the analytical expression of the thermodynamic entropy production is deduced in terms of the Shannon disorder per monomer in the copolymer sequence. The Mayo-Lewis equation is recovered in the fully irreversible growth regime. The theory also applies to Bernoullian chains in the case where the attachment and detachment rates only depend on the reacting monomer.

2.
Phys Rev Lett ; 98(15): 150601, 2007 Apr 13.
Article in English | MEDLINE | ID: mdl-17501329

ABSTRACT

The time-reversal symmetry of nonequilibrium fluctuations is experimentally investigated in two out-of-equilibrium systems: namely, a Brownian particle in a trap moving at constant speed and an electric circuit with an imposed mean current. The dynamical randomness of their nonequilibrium fluctuations is characterized in terms of the standard and time-reversed entropies per unit time of dynamical systems theory. We present experimental results showing that their difference equals the thermodynamic entropy production in units of Boltzmann's constant.

3.
J Chem Phys ; 121(13): 6167-74, 2004 Oct 01.
Article in English | MEDLINE | ID: mdl-15446910

ABSTRACT

The Onsager and higher-order reciprocity relations are derived from a fluctuation theorem for nonequilibrium reactions ruled by the chemical master equation. The fluctuation theorem is obtained for the generating function of the macroscopic fluxes between chemiostats maintaining the system in a nonequilibrium steady state. The macroscopic affinities associated with the fluxes are identified by graph theory. The Yamamoto-Zwanzig formulas for the reaction constants are also derived from the fluctuation theorem.

SELECTION OF CITATIONS
SEARCH DETAIL
...