Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Nanoscale Adv ; 6(10): 2669-2681, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38752140

ABSTRACT

Protein-based materials have emerged as promising candidates for proton-conducting biomaterials. Therefore, drawing inspiration from the amino acid composition of prion-like domains, we designed short self-assembling peptides incorporating the (X-Tyr) motif, with X representing Asn, Gly and Ser, which form fibrillar structures capable of conducting protons. In this study, we conducted an analysis of the conductivity capacity of these fibers, with a focus on temperature and frequency dependence of conductivity. The loss tangent curves data and the electrode polarization model with the Debye approximation were employed to calculate transport properties, including conductivity, diffusivity, and density of charge carriers. Results revealed the prion-like fibers can transport protons more efficiently than biomaterials and other synthetic proton conducting materials, and that a significant increase in conductivity is observed with fibrillar orientations. The temperature dependence of conductivity of the peptides, measured in wet conditions, showed conductivities following the trend σ(NY7) < σ(GY7) < σ(SY7), in all the range of temperatures studied. The Arrhenius behavior, and the activation energy associated with conductivity followed the trend: Eact (SY7) = 8.2 ± 0.6 kJ mol-1 < Eact (GY7) < 13 ± 5 kJ mol-1 < Eact (NY7) = 31 ± 7 kJ mol-1, in different range of temperatures depending of the peptide. Furthermore, the diffusion coefficient correlated with increasing temperature in GY7 and SY7 fibers for temperatures compress between 20 °C and 80 °C, while NY7 only below 60 °C. However, it is noteworthy that the diffusivity observed in the SY7 peptide is lower, compared to GY7 and NY7 presumably due to its enlarged length. This observation can be attributed to two factors: firstly, the higher conductivity values observed in SY7 compared to GY7 and NY7, and secondly, to the value of relation observed of cations present in the peptide SY7 compared with GY7 and NY7, which in turn is dependent on temperature. In light of these findings, we envision our prion-inspired nanofibers as highly efficient proton-conducting natural biopolymers that are both biocompatible and biodegradable. These properties provide the opportunity for the development of next-generation bioelectrical interfaces and protonic devices.

2.
Phys Chem Chem Phys ; 26(8): 6736-6751, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38323471

ABSTRACT

An investigation into the intrinsic electrical conductivity of perovskite powders MAPbX3, where X represents iodine (I), bromine (Br), or chlorine (Cl), was conducted to explore its impact on their photovoltaic performance. Results revealed that MAPbCl3 demonstrated light absorption ability in the ultraviolet and visible regions, while MAPbBr3 showed capacity for light absorption at longer wavelengths in the visible spectrum. On the other hand, MAPbI3 exhibited good absorption at longer wavelengths, indicating its ability to absorb light in the near-infrared region. The optical bandgap of each perovskite was determined to be 2.90 eV for MAPbCl3, 2.20 eV for MAPbBr3, and 1.47 eV for MAPbI3. The electrical conductivities of these powders were measured in-plane using the four-probe method and through-plane by electrochemical impedance spectroscopy (EIS). Electrochemical impedance spectroscopy (EIS) studies revealed a significant change in the conductivity of the MAPbI3 perovskite at temperatures between 80 °C and 100 °C. This change could be attributed to structural modifications induced when the temperature exceeds these values. The through-plane conductivity changed from 3 × 10-8 S cm-1 at 60 °C to approximately 6 × 10-5 S cm-1 at 120 °C and around 2 × 10-3 S cm-1 at 200 °C. Meanwhile, the sheet conductivity (in-plane conductivity) measurements performed at ambient temperature reveal that sheet conductivities are 489 × 103 S m-1, 486 × 103 S m-1 and 510 × 103 S m-1 for MAPbBr3, MAPbCl3 and MAPbI3, respectively. This study provides valuable insights for optimizing the performance of perovskite solar cells. Understanding how dopants influence the electrical conductivity and photovoltaic properties of the perovskite material, this work will enable researchers to design and engineer more efficient and stable solar cell devices based on MAPbX3 perovskites.

3.
Nanomaterials (Basel) ; 13(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37630896

ABSTRACT

A novel manufacturing process is presented for producing nanopowders and thin films of CuCoO2 (CCO) material. This process utilizes three cost-effective synthesis methods: hydrothermal, sol-gel, and solid-state reactions. The resulting delafossite CuCoO2 samples were deposited onto transparent substrates through spray pyrolysis, forming innovative thin films with a nanocrystal powder structure. Prior to the transformation into thin films, CuCoO2 powder was first produced using a low-cost approach. The precursors for both powders and thin films were deposited onto glass surfaces using a spray pyrolysis process, and their characteristics were examined through X-ray diffraction, scanning electron microscopy, HR-TEM, UV-visible spectrophotometry, and electrochemical impedance spectroscopy (EIS) analyses were conducted to determine the conductivity in the transversal direction of this groundbreaking material for solar cell applications. On the other hand, the sheet resistance of the samples was investigated using the four-probe method to obtain the sheet resistivity and then calculate the in-plane conductivity of the samples. We also investigated the aging characteristics of different precursors with varying durations. The functional properties of CuCoO2 samples were explored by studying chelating agent and precursor solution aging periods using Density Functional Theory calculations (DFT). A complementary Density Functional Theory study was also performed in order to evaluate the electronic structure of this compound. Resuming, this study thoroughly discusses the synthesis of delafossite powders and their conversion into thin films, which hold potential as hole transport layers in transparent optoelectronic devices.

4.
ACS Omega ; 7(42): 37954-37963, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36312350

ABSTRACT

In this work, poly(vinyl alcohol) (PVOH)/graphene (GN) oxide/clay aerogels were prepared using montmorillonite (MMT) and kaolinite (KLT) as fillers. This work paves the way for the development of aerogels filled with MMT or KLT with high conductivity. The mechanical properties of the polymer/clay aerogels are enhanced by incorporating GN into these systems. These composite materials have an enhanced thermal stability, and the combination of PVOH and GN leads to interconnected channels which favored the conductivity when a clay (MMT or KLT) is added to the mixed PVOH/GN matrix. However, after compressing the samples, the conductivities drastically decreased. These results show that the design of solid MMT/GN and KLT/GN composites as aerogels allows maximizing the space utilization of the electrode volume to achieve unhindered ion transport, which seems contrary to the general design principle of electrode materials where a suitable porous structure is desired, such as in our uncompressed samples. These findings also demonstrate the potential of these materials in electrodes, sensors, batteries, pressure-sensing applications, and supercapacitors.

5.
Phys Chem Chem Phys ; 23(21): 12493, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34008626

ABSTRACT

Correction for 'Temperature dependence of anomalous protonic and superprotonic transport properties in mixed salts based on CsH2PO4' by Andreu Andrio et al., Phys. Chem. Chem. Phys., 2019, 21, 12948-12960, DOI: 10.1039/C8CP07472K.

6.
Nanomaterials (Basel) ; 11(5)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922537

ABSTRACT

A new approach for the synthesis of nanopowders and thin films of CuInGaSe2 (CIGS) chalcopyrite material doped with different amounts of Cr is presented. The chalcopyrite material CuInxGa1 - xSe2 was doped using Cr to form a new doped chalcopyrite with the structure CuInxCryGa1 - x - ySe2, where x = 0.4 and y = 0.0, 0.1, 0.2, or 0.3. The electrical properties of CuInx CryGa1 - x - ySe2 are highly dependent on the Cr content and results show these materials as promising dopants for the fabrication thin film solar cells. The CIGS nano-precursor powder was initially synthesized via an autoclave method, and then converted into thin films over transparent substrates. Both crystalline precursor powders and thin films deposited onto ITO substrates following a spin-coating process were subsequently characterized using XRD, SEM, HR-TEM, UV-visible and electrochemical impedance spectroscopy (EIS). EIS measurement was performed to evaluate the dc-conductivity of these novel materials as conductive films to be applied in solar cells.

7.
Phys Chem Chem Phys ; 23(2): 1759, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33404563

ABSTRACT

Correction for 'Free ion diffusivity and charge concentration on cross-linked polymeric ionic liquid iongel films based on sulfonated zwitterionic salts and lithium ions' by David Valverde et al., Phys. Chem. Chem. Phys., 2019, 21, 17923-17932, DOI: 10.1039/C9CP01903K.

8.
Soft Matter ; 16(32): 7624-7635, 2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32735001

ABSTRACT

In this paper, a series of composite proton exchange membranes comprising a cobaltacarborane protonated H[Co(C2B9H11)2] named (H[COSANE]) and polybenzimidazole (PBI) for a high temperature proton exchange membrane fuel cell (PEMFC) is reported, with the aim of enhancing the proton conductivity of PBI membranes doped with phosphoric acid. The effects of the anion [Co(C2B9H11)2] concentration in three different polymeric matrices based on the PBI structure, poly(2,2'-(m-phenylene)-5,5'-bibenzimidazole) (PBI-1), poly[2,2'-(p-oxydiphenylene)-5,5'-bibenzimidazole] (PBI-2) and poly(2,2'-(p-hexafluoroisopropylidene)-5,5'-bibenzimidazole) (PBI-3), have been investigated. The conductivity, diffusivity and mobility are greater in the composite membrane poly(2,2'-(p-hexafluoroisopropylidene)-5,5'-bibenzimidazole) containing fluorinated groups, reaching a maximum when the amount of H[COSANE] was 15%. In general, all the prepared membranes displayed excellent and tunable properties as conducting materials, with conductivities higher than 0.03 S cm-1 above 140 °C. From an analysis of electrode polarization (EP) the proton diffusion coefficients and mobility have been calculated.

9.
Phys Chem Chem Phys ; 22(2): 437-445, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31799568

ABSTRACT

The crystallographic structure of solid electrolytes and other materials determines the protonic conductivity in devices such as fuel cells, ionic-conductors, and supercapacitors. Experiments show that a rise of the temperature in a narrow interval may lead to a sudden increase of several orders of magnitude of the conductivity of some materials, a process called a superprotonic transition. Here, we use a novel macro-transport theory for irregular domains to show that the change of entropic restrictions associated with solid-solid phase or structural transitions controls the sudden change of the ionic conductivity when the superprotonic transition takes place. Specifically, we deduce a general formula for the temperature dependence on the ionic conductivity that fits remarkably well experimental data of superprotonic transitions in doped cesium phosphates and other materials reported in the literature.

10.
Chemistry ; 25(63): 14308-14319, 2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31385348

ABSTRACT

Conducting organic polymers (COPs) are made of a conjugated polymer backbone supporting a certain degree of oxidation. These positive charges are compensated by the doping anions that are introduced into the polymer synthesis along with their accompanying cations. In this work, the influence of these cations on the stoichiometry and physicochemical properties of the resulting COPs have been investigated, something that has previously been overlooked, but, as here proven, is highly relevant. As the doping anion, metallacarborane [Co(C2 B9 H11 )2 ]- was chosen, which acts as a thistle. This anion binds to the accompanying cation with a distinct strength. If the binding strength is weak, the doping anion is more prone to compensate the positive charge of the polymer, and the opposite is also true. Thus, the ability of the doping anion to compensate the positive charges of the polymer can be tuned, and this determines the stoichiometry of the polymer. As the polymer, PEDOT was studied, whereas Cs+ , Na+ , K+ , Li+ , and H+ as cations. Notably, with the [Co(C2 B9 H11 )2 ]- anions, these cations are grouped into two sets, Cs+ and H+ in one and Na+ , K+ , and Li+ in the second, according to the stoichiometry of the COPs: 2:1 EDOT/[Co(C2 B9 H11 )2 ]- for Cs+ and H+ , and 3:1 EDOT/[Co(C2 B9 H11 )2 ]- for Na+ , K+ , and Li+ . The distinct stoichiometries are manifested in the physicochemical properties of the COPs, namely in the electrochemical response, electronic conductivity, ionic conductivity, and capacitance.

11.
Phys Chem Chem Phys ; 21(32): 17923-17932, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31380865

ABSTRACT

The properties of various mixtures of a zwitterionic ionic liquid (ZIs-1) and LiNTf2, including their conductivity, have been studied showing how they can be adjusted through their molar composition. Conductivity tends to increase with the LiNTf2 content although it presents a minimum at the region close to the eutectic point. These mixtures also provide excellent features as liquid phases for the preparation of composite materials based on crosslinked PILs. The prepared films display excellent and tuneable properties as conducting materials, with conductivities that can be higher than 10-2 S cm-1 above 100 °C. The selected polymeric compositions show very good mechanical properties and thermal stability, even for low crosslinking degrees, along with a suitable flexibility and good transparency. The final properties of the films correlate with the composition of the monomeric mixture used and with that of the ZIs-1:LiNTf2 mixture.

12.
Polymers (Basel) ; 11(7)2019 Jul 14.
Article in English | MEDLINE | ID: mdl-31337094

ABSTRACT

The quest for sustainable and more efficient energy-converting devices has been the focus of researchers' efforts in the past decades. In this study, SiO2 nanofiber mats were fabricated through an electrospinning process and later functionalized using silane chemistry to introduce different polar groups -OH (neutral), -SO3H (acidic) and -NH2 (basic). The modified nanofiber mats were embedded in PBI to fabricate mixed matrix membranes. The incorporation of these nanofiber mats in the PBI matrix showed an improvement in the chemical and thermal stability of the composite membranes. Proton conduction measurements show that PBI composite membranes containing nanofiber mats with basic groups showed higher proton conductivities, reaching values as high as 4 mS·cm-1 at 200 °C.

13.
Phys Chem Chem Phys ; 21(24): 12948-12960, 2019 Jun 19.
Article in English | MEDLINE | ID: mdl-31165797

ABSTRACT

We present an experimental study and a theoretical interpretation of the temperature dependence of the transport properties of doped CsH2PO4 salts in both protonic and superprotonic phases. Cesium phosphate based solid electrolytes are technologically relevant because their operational temperature range is about 100 to 300 °C in which a superprotonic transition may manifest depending on its mixed composition. The experimental study was carried out using impedance spectroscopy at the temperature range of 150-230 °C, and the protonic and superprotonic transport properties and proton concentrations were calculated and analyzed by using the electrode polarization, and the Debye and Cole-Cole models for the dielectric constant. We have shown that the transport properties predicted by the Cole-Cole model are consistent with the conductivity measurements whereas the Debye model shows some inconsistencies. We attribute this to the fact that the Cole-Cole model incorporates the effects of interactions among charge carriers better than the more commonly used Debye model. In this way, our work shows a more consistent approach to determine the transport properties of solid electrolytes and, therefore, provides a more reliable tool to analyze the transport properties of heterogeneous solid electrolytes that can be used in electrochemical devices, including fuel cells and supercapacitors.

14.
Membranes (Basel) ; 9(4)2019 Apr 09.
Article in English | MEDLINE | ID: mdl-30970627

ABSTRACT

CsH2PO4 is a proton conductor pertaining to the acid salts group and shows a phase transition from monoclinic to cubic phase at 232 ± 2 °C under high-steam atmospheres (>30%). This cubic phase gives rise to the so-called superprotonic conductivity. In this work, the influence of the partial substitution of Cs by Ba and Rb, as well as the partial substitution of P by W, Mo, and S in CsH2PO4 on the phase transition temperature and electrochemical properties is studied. Among the tested materials, the partial substitution by Rb led to the highest conductivity at high temperature. Furthermore, Ba and S-substituted salts exhibited the highest conductivity at low temperatures. CsH2PO4 was used as electrolyte in a fully-assembled fuel cell demonstrating the applicability of the material at high pressures and the possibility to use other materials (Cu and ZnO) instead of Pt as electrode electrocatalyst. Finally, an electrolyzer cell composed of CsH2PO4 as electrolyte, Cu and ZnO as cathode and Pt and Ag as anode was evaluated, obtaining a stable production of H2 at 250 °C.

15.
Nanomaterials (Basel) ; 8(12)2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30551604

ABSTRACT

The zeolitic imidazolate frameworks (ZIFs) ZIF-8, ZIF-67, and a Zn/Co bimetallic mixture (ZMix) were synthesized and used as fillers in the preparation of composite sulfonated poly(ether ether ketone) (SPEEK) membranes. The presence of the ZIFs in the polymeric matrix enhanced proton transport relative to that observed for SPEEK or ZIFs alone. The real and imaginary parts of the complex conductivity were obtained by electrochemical impedance spectroscopy (EIS), and the temperature and frequency dependence of the real part of the conductivity were analyzed. The results at different temperatures show that the direct current (dc) conductivity was three orders of magnitude higher for composite membranes than for SPEEK, and that of the SPEEK/ZMix membrane was higher than those for SPEEK/Z8 and SPEEK/Z67, respectively. This behavior turns out to be more evident as the temperature increases: the conductivity of the SPEEK/ZMix was 8.5 × 10-3 S·cm-1, while for the SPEEK/Z8 and SPEEK/Z67 membranes, the values were 2.5 × 10-3 S·cm-1 and 1.6 × 10-3 S·cm-1, respectively, at 120 °C. Similarly, the real and imaginary parts of the complex dielectric constant were obtained, and an analysis of tan δ was carried out for all of the membranes under study. Using this value, the diffusion coefficient and the charge carrier density were obtained using the analysis of electrode polarization (EP).

16.
Phys Chem Chem Phys ; 20(15): 10173-10184, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29594295

ABSTRACT

The conductivity of a series of composite membranes, based on polybenzimidazole (PBI) containing the metallacarborane salt M[Co(C2B9H11)2], M[COSANE] and tetraphenylborate, M[B(C6H5)4], M[TPB] both anions having the same number of atoms and the same negative charge, has been investigated. Different cations (M = H+, Li+ and Na+) have been studied and the composite membranes have been characterized by water uptake, swelling ratios, ATR FT-IR, thermogravimetric analysis and electrochemical impedance spectroscopy to explore the dielectric response and ion dynamics in composite membranes. Our results show that conductivity increases with increasing temperature and it is higher for H+ than for Li+ and Na+ for all temperatures under study. The mobility of Li+ is greater in [COSANE]- than in [TPB]- composite PBI@membranes while for Na+ it is the opposite. The temperature dependence of the conductivity of the composite was followed by a typical Arrhenius behaviour with two different regions: (1) between 20 and 100 °C, and (2) between 100 and 150 °C. Using the analysis of electrode polarization (EP) based on the Thrukhan theory we have calculated the ionic diffusion coefficients and the density of carriers. From the double logarithmic plot of the imaginary part of the conductivity (σ'') versus frequency in the entire range of temperatures studied we have determined for each sample at each temperature, the frequency values of the onset (fON) and full development of electrode polarization (fMAX), respectively, which permit us to calculate static permittivity.

17.
Phys Chem Chem Phys ; 19(23): 15177-15186, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28561085

ABSTRACT

The development of new types of ion conducting materials is one of the most important challenges in the field of energy. Lithium salt polymer electrolytes have been the most convenient, and thus the most widely used in the design of the new generation of batteries. However, in this work, we have observed that Na+ ions provide a higher conductivity, or at least a comparable conductivity to that of Li+ ions in the same basic material. This provides an excellent possibility to use Na+ ions in the design of a new generation of batteries, instead of lithium, to enhance conductivity and ensure wide supply. Our results indicate that the dc-conductivity is larger when the anion is [Co(C2B9H11)2]-, [COSANE]-, compared to tetraphenylborate, [TPB]-. Our data also prove that the dc-conductivity behavior of Li+ and Na+ salts is opposite with the two anions. At 40 °C, the conductivity values change from 1.05 × 10-2 S cm-1 (Li[COSANE]) and 1.75 × 10-2 S cm-1 (Na[COSANE]) to 2.8 × 10-3 S cm-1 (Li[TPB]) and 1.5 × 10-3 S cm-1 (Na[TPB]). These findings indicate that metallacarboranes can be useful components of mixed matrix membranes (MMMs), providing excellent conductivity when the medium contains sufficient amounts of ionic components and a certain degree of humidity.

18.
J. optom. (Internet) ; 8(1): 12-18, ene.-mar. 2015. tab, graf
Article in English | IBECS | ID: ibc-137662

ABSTRACT

Purpose: We present an analysis of the corneal oxygen consumption Qc from non-linear models, using data of oxygen partial pressure or tension (pO2 ) obtained from in vivo estimation previously reported by other authors.1 Methods: Assuming that the cornea is a single homogeneous layer, the oxygen permeability through the cornea will be the same regardless of the type of lens that is available on it. The obtention of the real value of the maximum oxygen consumption rate Qc,max is very important because this parameter is directly related with the gradient pressure profile into the cornea and moreover, the real corneal oxygen consumption is influenced by both anterior and posterior oxygen fluxes. Results: Our calculations give different values for the maximum oxygen consumption rate Qc,max, when different oxygen pressure values (high and low pO2 ) are considered at the interface cornea-tears film (AU)


Objetivo: Presentamos un análisis del consumo de oxígeno de la córnea Qc a partir de modelos no lineales, utilizando los datos de presión parcial del oxígeno (pO2) obtenidos de la estimación in vivo obtenidas previamente por otros autores.1 Métodos: Asumiendo que la córnea es una capa homogénea única, la permeabilidad del oxígeno a través de la misma será la misma, independientemente del tipo de lentes que se utilicen sobre ella. La obtención del valor real de la tasa máxima de consumo de oxígeno Qc,max, es muy importante porque este parámetro está directamente relacionado con el perfil del gradiente de presión dentro de la córnea y, además, el consumo real de oxígeno de la córnea está influenciado tanto por los flujos de oxígeno anterior como posterior. Resultados: Nuestros cálculos aportan diferentes valores para la tasa de consumo máximo de oxígeno Qc,max, al considerar diferentes valores de la presión del oxígeno (pO2 elevado y bajo) en la interfase entre la córnea y la película lagrimal. Conclusión: Estos resultados son relevantes para calcular la presión parcial del oxígeno, que se encuentra en diferentes profundidades dentro del tejido de la córnea por detrás de las lentes de contacto con diferente transmisibilidad al oxígeno (AU)


Subject(s)
Humans , Oxygen Consumption/physiology , Cornea/physiology , Contact Lenses, Hydrophilic , Lacrimal Apparatus , Oximetry/methods , Lacrimal Elimination/physiology , Permeability
19.
J Optom ; 8(1): 12-8, 2015.
Article in English | MEDLINE | ID: mdl-25649636

ABSTRACT

PURPOSE: We present an analysis of the corneal oxygen consumption Qc from non-linear models, using data of oxygen partial pressure or tension (P(O2) ) obtained from in vivo estimation previously reported by other authors. (1) METHODS: Assuming that the cornea is a single homogeneous layer, the oxygen permeability through the cornea will be the same regardless of the type of lens that is available on it. The obtention of the real value of the maximum oxygen consumption rate Qc,max is very important because this parameter is directly related with the gradient pressure profile into the cornea and moreover, the real corneal oxygen consumption is influenced by both anterior and posterior oxygen fluxes. RESULTS: Our calculations give different values for the maximum oxygen consumption rate Qc,max, when different oxygen pressure values (high and low P(O2)) are considered at the interface cornea-tears film. CONCLUSION: Present results are relevant for the calculation on the partial pressure of oxygen, available at different depths into the corneal tissue behind contact lenses of different oxygen transmissibility.


Subject(s)
Contact Lenses, Hydrophilic , Cornea/metabolism , Oxygen Consumption , Diffusion , Humans , Kinetics , Models, Biological , Nonlinear Dynamics
20.
Phys Chem Chem Phys ; 11(2): 358-65, 2009 Jan 14.
Article in English | MEDLINE | ID: mdl-19088992

ABSTRACT

Water molecules in confined geometries like nanopores and biological ion channels exhibit structural and dynamical properties very different from those found in free solution. Protein channels that open aqueous pores through biological membranes provide a complex spatial and electrostatic environment that decreases the translational and rotational mobility of water molecules, thus altering the effective dielectric constant of the pore water. By using the Booth equation, we study the effect of the large electric field created by ionizable residues of an hour-glass shaped channel, the bacterial porin OmpF, on the pore water dielectric constant, epsilon(w). We find a space-dependent significant reduction (down to 20) of epsilon(w) that may explain some ad hoc assumptions about the dielectric constant of the protein and the water pore made to reconcile model calculations with measurements of permeation properties and pK(a)'s of protein residues. The electric potential calculations based on the OmpF protein atomic structure and the Booth field-dependent dielectric constant show that protein dielectric constants ca. 10 yield good agreement with molecular dynamics simulations as well as permeation experiments.


Subject(s)
Porins/chemistry , Water/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Electric Impedance , Linear Models , Porins/metabolism , Reproducibility of Results , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...