Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Phys J E Soft Matter ; 35(5): 41, 2012 May.
Article in English | MEDLINE | ID: mdl-22644136

ABSTRACT

The aim of this study is to analyze the mobility of polymer chains in semicrystalline poly(vinylidene fluoride) (PVDF). PVDF crystallizes from the melt in the α crystalline phase. The transformation from the α phase to the electroactive ß phase can be induced by stretching at temperatures in the range between 80 and 140 °C. The spherulitic structure of the crystalline phase is deformed during stretching to form fibrils oriented in the direction of the strain. The amorphous phase confined among the crystalline lamellae is distorted as well and some degree of orientation of the polymer chains is expected. Dynamic-mechanical and dielectric spectroscopy measurements were performed in PVDF films stretched to strain ratios up to 5 at temperatures between 80 and 140 °C. Dynamic-mechanical measurements were conducted between -60 °C and melting and in this temperature range the relaxation spectra show the main relaxation of the amorphous phase (called ß-relaxation) and at higher temperatures a relaxation related to crystallites motions (α (c)-relaxation). Although the mean relaxation times of the ß-relaxation are nearly equal in PVDF before and after crystal phase transformation, a significant change of shape of the relaxation spectrum proves the effect of chain distortion due to crystal reorganization. In stretched PVDF the elastic modulus of the polymer in the direction of deformation is significantly higher than in the transversal one, as expected by chain and crystals fibril orientation. The recovery of the deformation when the sample is heated is related with the appearance of the α (c)-relaxation. Dielectric spectroscopy spectrum shows the main relaxation of the amorphous phase and a secondary process (γ-relaxation) at lower temperatures. Stretching produces significant changes in the relaxation processes, mainly in the strength and shape of the main relaxation ß. The Havriliak-Negami function has been applied to analyze the dielectric response.


Subject(s)
Dielectric Spectroscopy , Mechanical Phenomena , Motion , Polyvinyls , Hot Temperature , Phase Transition
2.
Eur Phys J E Soft Matter ; 22(4): 293-302, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17415514

ABSTRACT

The dielectric relaxation spectrum of polycaprolactone (PCL) networks hydrophilized with different amounts of 2-hydroxyethyl acrylate (HEA) is investigated. PCL is a semicrystalline polyester with a complex relaxation spectrum that includes the main alpha relaxation and two secondary modes (beta, gamma) at lower temperatures. The overlapping of the different relaxational modes was split by using several Havriliak-Negami functions. Crosslinking the material modifies the dynamics of the main relaxation process as reflected by the parameters that characterize the Vogel behavior of the process and the dynamic fragility. The incorporation of HEA units in the network results in a material with microphase separation: two alpha processes are detected, the one corresponding to the PCL chains and the new one associated to nanometric regions that contain different amount of both comonomers. The incorporation of the HEA units in the system involves the presence of a new beta(sw) relaxation due to the link of two side chains by water molecules through hydrogen bonding.


Subject(s)
Acrylates/chemistry , Biocompatible Materials/chemistry , Polyesters/chemistry , Calorimetry, Differential Scanning , Computer Simulation , Cross-Linking Reagents/chemistry , Hydrogen Bonding , Models, Chemical , Spectrum Analysis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...