Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oxid Med Cell Longev ; 2021: 8898919, 2021.
Article in English | MEDLINE | ID: mdl-34035878

ABSTRACT

Experimental studies have shown the action of green tea in modulating cardiac remodeling. However, the effects of green tea on the cardiac remodeling process induced by doxorubicin (DOX) are not known. Therefore, this study is aimed at evaluating whether green tea extract could attenuate DOX-induced cardiac remodeling, assessed by cardiac morphological and functional changes and associated with the evaluation of different modulators of cardiac remodeling. The animals were divided into four groups: the control group (C), the green tea group (GT), the DOX group (D), and the DOX and green tea group (DGT). Groups C and GT received intraperitoneal sterile saline injections, D and DGT received intraperitoneal injections of DOX, and GT and DGT were fed chow supplemented with green tea extract for 35 days prior to DOX injection. After forty-eight hours, we performed an echocardiogram and euthanasia and collected the materials for analysis. Green tea attenuated DOX-induced cardiotoxicity by increasing cardiac function and decreasing the concentric remodeling. Treatment with DOX increased oxidative stress in the heart, marked by a higher level of lipid hydroperoxide (LH) and lower levels of antioxidant enzymes. Treatment with green tea increased the antioxidant enzymes' activity and decreased the production of LH. Green tea extract increased the expression of Top2-ß independent of DOX treatment. The activity of ATP synthase, citrate synthase, and complexes I and II decreased with DOX, without the effects of green tea. Both groups that received DOX presented with a lower ratio of P-akt/T-akt and a higher expression of CD45, TNFα, and intermediate MMP-2, without the effects of green tea. In conclusion, green tea attenuated cardiac remodeling induced by DOX and was associated with increasing the expression of Top2-ß and lowering oxidative stress. However, energy metabolism and inflammation probably do not receive the benefits induced by green tea in this model.


Subject(s)
Antioxidants/metabolism , Camellia sinensis/chemistry , DNA Topoisomerases, Type II/drug effects , Doxorubicin/adverse effects , Doxorubicin/toxicity , Ventricular Remodeling/drug effects , Acute Disease , Animals , Disease Models, Animal , Male , Rats , Rats, Wistar
2.
J Cell Mol Med ; 25(2): 1314-1318, 2021 01.
Article in English | MEDLINE | ID: mdl-33300293

ABSTRACT

The aim of this study is to evaluate whether the alterations in glucose metabolism and insulin resistance are mechanisms presented in cardiac remodelling induced by the toxicity of cigarette smoke. Male Wistar rats were assigned to the control group (C; n = 12) and the cigarette smoke-exposed group (exposed to cigarette smoke over 2 months) (CS; n = 12). Transthoracic echocardiography, blood pressure assessment, serum biochemical analyses for catecholamines and cotinine, energy metabolism enzymes activities assay; HOMA index (homeostatic model assessment); immunohistochemistry; and Western blot for proteins involved in energy metabolism were performed. The CS group presented concentric hypertrophy, systolic and diastolic dysfunction, and higher oxidative stress. It was observed changes in energy metabolism, characterized by a higher HOMA index, lower concentration of GLUT4 (glucose transporter 4) and lower 3-hydroxyl-CoA dehydrogenase activity, suggesting the presence of insulin resistance. Yet, the cardiac glycogen was depleted, phosphofructokinase (PFK) and lactate dehydrogenase (LDH) increased, with normal pyruvate dehydrogenase (PDH) activity. The activity of citrate synthase, mitochondrial complexes and ATP synthase (adenosine triphosphate synthase) decreased and the expression of Sirtuin 1 (SIRT1) increased. In conclusion, exposure to cigarette smoke induces cardiac remodelling and dysfunction. The mitochondrial dysfunction and heart damage induced by cigarette smoke exposure are associated with insulin resistance and glucose metabolism changes.


Subject(s)
Glucose/metabolism , Insulin Resistance , Smoking/adverse effects , Ventricular Remodeling , Animals , Catecholamines/blood , Cotinine/blood , Electrocardiography , Energy Metabolism , Male , Oxidative Stress , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...