Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 39(Database issue): D272-6, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21059684

ABSTRACT

The polyglutamine diseases are caused in part by a gain-of-function mechanism of neuronal toxicity involving protein conformational changes that result in the formation and deposition of ß-sheet rich aggregates. Recent evidence suggests that the misfolding mechanism is context-dependent, and that properties of the host protein, including the domain architecture and location of the repeat tract, can modulate aggregation. In order to allow the bioinformatic investigation of the context of polyglutamines, we have constructed a database, PolyQ (http://pxgrid.med.monash.edu.au/polyq). We have collected the sequences of all human proteins containing runs of seven or more glutamine residues and annotated their sequences with domain information. PolyQ can be interrogated such that the sequence context of polyglutamine repeats in disease and non-disease associated proteins can be investigated.


Subject(s)
Databases, Protein , Peptides/chemistry , Repetitive Sequences, Amino Acid , Disease , Humans , Protein Structure, Tertiary , Proteins/chemistry , Sequence Analysis, Protein
2.
PLoS One ; 5(4): e10049, 2010 Apr 06.
Article in English | MEDLINE | ID: mdl-20386612

ABSTRACT

BACKGROUND: The crystallographic determination of protein structures can be computationally demanding and for difficult cases can benefit from user-friendly interfaces to high-performance computing resources. Molecular replacement (MR) is a popular protein crystallographic technique that exploits the structural similarity between proteins that share some sequence similarity. But the need to trial permutations of search models, space group symmetries and other parameters makes MR time- and labour-intensive. However, MR calculations are embarrassingly parallel and thus ideally suited to distributed computing. In order to address this problem we have developed MrGrid, web-based software that allows multiple MR calculations to be executed across a grid of networked computers, allowing high-throughput MR. METHODOLOGY/PRINCIPAL FINDINGS: MrGrid is a portable web based application written in Java/JSP and Ruby, and taking advantage of Apple Xgrid technology. Designed to interface with a user defined Xgrid resource the package manages the distribution of multiple MR runs to the available nodes on the Xgrid. We evaluated MrGrid using 10 different protein test cases on a network of 13 computers, and achieved an average speed up factor of 5.69. CONCLUSIONS: MrGrid enables the user to retrieve and manage the results of tens to hundreds of MR calculations quickly and via a single web interface, as well as broadening the range of strategies that can be attempted. This high-throughput approach allows parameter sweeps to be performed in parallel, improving the chances of MR success.


Subject(s)
Computational Biology/methods , Software , Structural Homology, Protein , Crystallography, X-Ray , Internet , Programming Languages , Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...