Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(15): 8271-8279, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32284418

ABSTRACT

Archaeological evidence plays a key role in longitudinal studies of humans and climate. Climate proxy data from Peruvian archaeological sites provide a case study through insight into the history of the "flavors" or varieties of El Niño (EN) events after ∼11 ka: eastern Pacific EN, La Niña, coastal EN (COA), and central Pacific or Modoki EN (CP). Archaeological proxies are important to the coastal Peruvian case because more commonly used paleoclimate proxies are unavailable or equivocal. Previously, multiproxy evidence from the Peruvian coast and elsewhere suggested that EN frequency varied over the Holocene: 1) present in the Early Holocene; 2) absent or very low frequency during the Middle Holocene (∼9 to 6 ka); 3) low after ∼6 ka; and 4) rapidly increasing frequency after 3 ka. Despite skepticism about the reliability of archaeological proxies, nonarchaeological proxies seemed to confirm this archaeological EN reconstruction. Although there is consensus that EN frequency varied over this period, some nonarchaeological and archaeological proxies call parts of this reconstruction into question. Here we review Holocene EN frequency reconstructions for the Peruvian coast, point to complexities introduced by apparent contradictions in a range of proxy records, consider the impact of CP and COA phenomena, and assess the merits of archaeological proxies in EN reconstructions. Reconciling Peruvian coastal paleoclimate data is critical for testing models of future EN behavior under climate variability.

2.
Science ; 295(5559): 1508-11, 2002 Feb 22.
Article in English | MEDLINE | ID: mdl-11859190

ABSTRACT

Peruvian sea catfish (Galeichthys peruvianus) sagittal otoliths preserve a record of modern and mid-Holocene sea surface temperatures (SSTs). Oxygen isotope profiles in otoliths excavated from Ostra [6010 +/- 90 years before the present (yr B.P.); 8 degrees 55'S] indicate that summer SSTs were approximately 3 degrees C warmer than those of the present. Siches otoliths (6450 +/- 110 yr B.P.; 4 degrees 40'S) recorded mean annual temperatures approximately 3 degrees to 4 degrees C warmer than were measured under modern conditions. Trophic level and population diversity and equitability data from these faunal assemblages and other Peruvian archaeological sites support the isotope interpretations and suggest that upwelling of the Peru-Chile current intensified after approximately 5000 yr B.P.


Subject(s)
Catfishes , Climate , Otolithic Membrane/chemistry , Oxygen Isotopes/analysis , Temperature , Animals , Archaeology , Ecosystem , Pacific Ocean , Peru , Seasons , Time
SELECTION OF CITATIONS
SEARCH DETAIL