Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Science ; 382(6667): eadf1226, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824650

ABSTRACT

The adult human brain comprises more than a thousand distinct neuronal and glial cell types, a diversity that emerges during early brain development. To reveal the precise sequence of events during early brain development, we used single-cell RNA sequencing and spatial transcriptomics and uncovered cell states and trajectories in human brains at 5 to 14 postconceptional weeks (pcw). We identified 12 major classes that are organized as ~600 distinct cell states, which map to precise spatial anatomical domains at 5 pcw. We described detailed differentiation trajectories of the human forebrain and midbrain and found a large number of region-specific glioblasts that mature into distinct pre-astrocytes and pre-oligodendrocyte precursor cells. Our findings reveal the establishment of cell types during the first trimester of human brain development.


Subject(s)
Brain , Neurogenesis , Pregnancy Trimester, First , Female , Humans , Pregnancy , Astrocytes/cytology , Brain/cytology , Brain/embryology , Neuroglia , Neurons/cytology , Atlases as Topic , Single-Cell Gene Expression Analysis
2.
Nat Methods ; 20(8): 1179-1182, 2023 08.
Article in English | MEDLINE | ID: mdl-37349575

ABSTRACT

Capture array-based spatial transcriptomics methods have been widely used to resolve gene expression in tissues; however, their spatial resolution is limited by the density of the array. Here we present expansion spatial transcriptomics to overcome this limitation by clearing and expanding tissue prior to capturing the entire polyadenylated transcriptome with an enhanced protocol. This approach enables us to achieve higher spatial resolution while retaining high library quality, which we demonstrate using mouse brain samples.


Subject(s)
Gene Expression Profiling , Transcriptome , Animals , Mice , Gene Library , Poly A
3.
Nat Neurosci ; 26(5): 891-901, 2023 05.
Article in English | MEDLINE | ID: mdl-37095395

ABSTRACT

The spatiotemporal regulation of cell fate specification in the human developing spinal cord remains largely unknown. In this study, by performing integrated analysis of single-cell and spatial multi-omics data, we used 16 prenatal human samples to create a comprehensive developmental cell atlas of the spinal cord during post-conceptional weeks 5-12. This revealed how the cell fate commitment of neural progenitor cells and their spatial positioning are spatiotemporally regulated by specific gene sets. We identified unique events in human spinal cord development relative to rodents, including earlier quiescence of active neural stem cells, differential regulation of cell differentiation and distinct spatiotemporal genetic regulation of cell fate choices. In addition, by integrating our atlas with pediatric ependymomas data, we identified specific molecular signatures and lineage-specific genes of cancer stem cells during progression. Thus, we delineate spatiotemporal genetic regulation of human spinal cord development and leverage these data to gain disease insight.


Subject(s)
Ependymoma , Neural Stem Cells , Child , Female , Pregnancy , Humans , Spinal Cord , Ependymoma/genetics , Ependymoma/metabolism , Cell Differentiation/genetics , Neural Stem Cells/physiology , Gene Expression , Gene Expression Profiling , Gene Expression Regulation, Developmental/genetics
4.
Nat Cell Biol ; 25(2): 351-365, 2023 02.
Article in English | MEDLINE | ID: mdl-36646791

ABSTRACT

The lung contains numerous specialized cell types with distinct roles in tissue function and integrity. To clarify the origins and mechanisms generating cell heterogeneity, we created a comprehensive topographic atlas of early human lung development. Here we report 83 cell states and several spatially resolved developmental trajectories and predict cell interactions within defined tissue niches. We integrated single-cell RNA sequencing and spatially resolved transcriptomics into a web-based, open platform for interactive exploration. We show distinct gene expression programmes, accompanying sequential events of cell differentiation and maturation of the secretory and neuroendocrine cell types in proximal epithelium. We define the origin of airway fibroblasts associated with airway smooth muscle in bronchovascular bundles and describe a trajectory of Schwann cell progenitors to intrinsic parasympathetic neurons controlling bronchoconstriction. Our atlas provides a rich resource for further research and a reference for defining deviations from homeostatic and repair mechanisms leading to pulmonary diseases.


Subject(s)
Embryo, Mammalian , Gene Expression Profiling , Humans , Cell Differentiation/genetics , Lung , Stem Cells
5.
Nat Commun ; 14(1): 509, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36720873

ABSTRACT

Spatially resolved transcriptomics has enabled precise genome-wide mRNA expression profiling within tissue sections. The performance of methods targeting the polyA tails of mRNA relies on the availability of specimens with high RNA quality. Moreover, the high cost of currently available spatial resolved transcriptomics assays requires a careful sample screening process to increase the chance of obtaining high-quality data. Indeed, the upfront analysis of RNA quality can show considerable variability due to sample handling, storage, and/or intrinsic factors. We present RNA-Rescue Spatial Transcriptomics (RRST), a workflow designed to improve mRNA recovery from fresh frozen specimens with moderate to low RNA quality. First, we provide a benchmark of RRST against the standard Visium spatial gene expression protocol on high RNA quality samples represented by mouse brain and prostate cancer samples. Then, we test the RRST protocol on tissue sections collected from five challenging tissue types, including human lung, colon, small intestine, pediatric brain tumor, and mouse bone/cartilage. In total, we analyze 52 tissue sections and demonstrate that RRST is a versatile, powerful, and reproducible protocol for fresh frozen specimens of different qualities and origins.


Subject(s)
RNA , Transcriptome , Child , Male , Humans , Animals , Mice , Transcriptome/genetics , RNA, Messenger , Benchmarking , Biological Assay
6.
Cell Rep Methods ; 2(11): 100325, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36452864

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics (SRT) have experienced rapid development in recent years. The findings of spaceflight-based scRNA-seq and SRT investigations are likely to improve our understanding of life in space and our comprehension of gene expression in various cell systems and tissue dynamics. However, compared to their Earth-based counterparts, gene expression experiments conducted in spaceflight have not experienced the same pace of development. Out of the hundreds of spaceflight gene expression datasets available, only a few used scRNA-seq and SRT. In this perspective piece, we explore the growing importance of scRNA-seq and SRT in space biology and discuss the challenges and considerations relevant to robust experimental design to enable growth of these methods in the field.


Subject(s)
Space Flight , Transcriptome , Transcriptome/genetics , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Gene Expression Profiling/methods
7.
Cell ; 185(15): 2840-2840.e1, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35868280

ABSTRACT

Spatially resolved transcriptomics methodologies using RNA sequencing principles have and will continue to contribute to decode the molecular landscape of tissues. Linking quantitative sequencing data with tissue morphology empowers profiling of cellular morphology and transcription over time and space in health and disease. To view this SnapShot, open or download the PDF.


Subject(s)
Transcriptome , Animals , Humans , Sequence Analysis, RNA , Spatial Analysis
8.
Nat Med ; 27(3): 546-559, 2021 03.
Article in English | MEDLINE | ID: mdl-33654293

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) and accessory proteases (TMPRSS2 and CTSL) are needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cellular entry, and their expression may shed light on viral tropism and impact across the body. We assessed the cell-type-specific expression of ACE2, TMPRSS2 and CTSL across 107 single-cell RNA-sequencing studies from different tissues. ACE2, TMPRSS2 and CTSL are coexpressed in specific subsets of respiratory epithelial cells in the nasal passages, airways and alveoli, and in cells from other organs associated with coronavirus disease 2019 (COVID-19) transmission or pathology. We performed a meta-analysis of 31 lung single-cell RNA-sequencing studies with 1,320,896 cells from 377 nasal, airway and lung parenchyma samples from 228 individuals. This revealed cell-type-specific associations of age, sex and smoking with expression levels of ACE2, TMPRSS2 and CTSL. Expression of entry factors increased with age and in males, including in airway secretory cells and alveolar type 2 cells. Expression programs shared by ACE2+TMPRSS2+ cells in nasal, lung and gut tissues included genes that may mediate viral entry, key immune functions and epithelial-macrophage cross-talk, such as genes involved in the interleukin-6, interleukin-1, tumor necrosis factor and complement pathways. Cell-type-specific expression patterns may contribute to the pathogenesis of COVID-19, and our work highlights putative molecular pathways for therapeutic intervention.


Subject(s)
COVID-19/epidemiology , COVID-19/genetics , Host-Pathogen Interactions/genetics , SARS-CoV-2/physiology , Sequence Analysis, RNA/statistics & numerical data , Single-Cell Analysis/statistics & numerical data , Virus Internalization , Adult , Aged , Aged, 80 and over , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , COVID-19/virology , Cathepsin L/genetics , Cathepsin L/metabolism , Datasets as Topic/statistics & numerical data , Demography , Female , Gene Expression Profiling/statistics & numerical data , Humans , Lung/metabolism , Lung/virology , Male , Middle Aged , Organ Specificity/genetics , Respiratory System/metabolism , Respiratory System/virology , Sequence Analysis, RNA/methods , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Single-Cell Analysis/methods
9.
iScience ; 23(10): 101556, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33083725

ABSTRACT

Alzheimer disease (AD) is a devastating neurological disease associated with progressive loss of mental skills and cognitive and physical functions whose etiology is not completely understood. Here, our goal was to simultaneously uncover novel and known molecular targets in the structured layers of the hippocampus and olfactory bulbs that may contribute to early hippocampal synaptic deficits and olfactory dysfunction in AD mice. Spatially resolved transcriptomics was used to identify high-confidence genes that were differentially regulated in AD mice relative to controls. A diverse set of genes that modulate stress responses and transcription were predominant in both hippocampi and olfactory bulbs. Notably, we identify Bok, implicated in mitochondrial physiology and cell death, as a spatially downregulated gene in the hippocampus of mouse and human AD brains. In summary, we provide a rich resource of spatially differentially expressed genes, which may contribute to understanding AD pathology.

10.
Science ; 364(6435): 89-93, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30948552

ABSTRACT

Paralysis occurring in amyotrophic lateral sclerosis (ALS) results from denervation of skeletal muscle as a consequence of motor neuron degeneration. Interactions between motor neurons and glia contribute to motor neuron loss, but the spatiotemporal ordering of molecular events that drive these processes in intact spinal tissue remains poorly understood. Here, we use spatial transcriptomics to obtain gene expression measurements of mouse spinal cords over the course of disease, as well as of postmortem tissue from ALS patients, to characterize the underlying molecular mechanisms in ALS. We identify pathway dynamics, distinguish regional differences between microglia and astrocyte populations at early time points, and discern perturbations in several transcriptional pathways shared between murine models of ALS and human postmortem spinal cords.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Gene Expression , Motor Neurons/metabolism , Spinal Cord/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Astrocytes/metabolism , Astrocytes/pathology , Disease Models, Animal , Gene Expression Profiling , Humans , Mice , Microglia/metabolism , Microglia/pathology , Motor Neurons/pathology , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Nerve Degeneration/genetics , Nerve Degeneration/physiopathology , Neuroglia/metabolism , Neuroglia/pathology , Postmortem Changes , Spatio-Temporal Analysis , Spinal Cord/pathology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...