Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Technol ; 58(22): 9515-9524, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38687472

ABSTRACT

Deltamethrin (DM) is a widely used insecticide that has demonstrated developmental toxicity in the early life stages of fish. To better characterize the underlying mechanisms, embryos from Tg(cmlc2:RFP), Tg(apo14:GFP), and Tg(mpx:GFP) transgenic strains of zebrafish were exposed to nominal DM concentrations of 0.1, 1, 10, 25, and 50 µg/L until 120 h post-fertilization (hpf). Heart size increased 56.7%, and liver size was reduced by 17.1% in zebrafish exposed to 22.7 and 24.2 µg/L DM, respectively. RNA sequencing and bioinformatic analyses predicted that key biological processes affected by DM exposure were related to inflammatory responses. Expression of IL-1 protein was increased by 69.0% in the 24.4 µg/L DM treatment, and aggregation of neutrophils in cardiac and hepatic histologic sections was also observed. Coexposure to resatorvid, an anti-inflammatory agent, mitigated inflammatory responses and cardiac toxicity induced by DM and also restored liver biomass. Our data indicated a complex proinflammatory mechanism underlying DM-induced cardiotoxicity and hepatotoxicity which may be important for key events of adverse outcomes and associated risks of DM to early life stages of fish.


Subject(s)
Cardiotoxicity , Zebrafish , Animals , Pyrethrins/toxicity , Insecticides/toxicity , Liver/drug effects , Nitriles/toxicity , Heart/drug effects
2.
Environ Sci Technol ; 54(19): 12245-12253, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32900186

ABSTRACT

The pyrethroid insecticide, bifenthrin, is frequently measured at concentrations exceeding those that induce acute and chronic toxicity to several invertebrate and fish species residing in the Sacramento-San Joaquin Delta of California. Since the brain is considered to be a significant target for bifenthrin toxicity, juvenile steelhead trout (Oncorhynchus mykiss) were treated with concentrations of bifenthrin found prior to (60 ng/L) and following (120 ng/L) major stormwater runoff events with nontargeted metabolomics used to target transcriptomic alterations in steelhead brains following exposure. Predicted responses were involved in cellular apoptosis and necrosis in steelhead treated with 60 ng/L bifenthrin using the software Ingenuity Pathway Analysis. These responses were predominately driven by decreased levels of acetyl-l-carnitine (ALC), docosahexaenoic acid (DHA), and adenine. Steelhead treated with 120 ng/L bifenthrin had reductions of lysophosphatidylcholines (LPC), lysophosphatidylethanolamines (LPE), and increased levels of betaine, which were predicted to induce an inflammatory response. Several genes predicted to be involved in apoptotic (caspase3 and nrf2) and inflammatory (miox) pathways had altered expression following exposure to bifenthrin. There was a significantly increased expression of caspase3 and miox in fish treated with 120 ng/L bifenthrin with a significant reduction of nrf2 in fish treated with 60 ng/L bifenthrin. These data indicate that bifenthrin may have multiple targets within the brain that affect general neuron viability, function, and signaling potentially through alterations in signaling fatty acids.


Subject(s)
Oncorhynchus mykiss , Pyrethrins , Water Pollutants, Chemical , Animals , Brain , Metabolomics , Pyrethrins/toxicity , Water Pollutants, Chemical/toxicity
3.
Environ Sci Technol ; 54(18): 11127-11136, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32794702

ABSTRACT

Formation of halogenated disinfection byproducts (DBPs) from pharmaceutically active compounds has been observed in water supply systems following wastewater chlorination. Although research has been limited thus far, several studies have shown that halogenated DBPs may elicit increased toxicity compared to their parent compounds. For example, the lipid regulator gemfibrozil has been shown to form chlorogemfibrozil (Cl-gemfibrozil) and bromogemfibrozil (Br-gemfibrozil) following chlorination, which are more potent antiandrogens in male Japanese medaka (Oryzias latipes) compared to their parent compounds. In the present study, we aimed to characterize the bioaccumulative ability of halogenated gemfibrozil DBPs in marine polychaetes via chronic sediment exposures and, consequently, to assess the chronic and acute toxicity of halogenated gemfibrozil DBPs through sediment (in vivo) and aqueous (in vivo and in silico) toxicity evaluations. Following 28 day sediment exposures, Cl-gemfibrozil and Br-gemfibrozil bioaccumulated within Neanthes arenaceodentata, with both compounds reducing survival and growth. The biota-sediment accumulation factors determined for Cl-gemfibrozil and Br-gemfibrozil were 2.59 and 6.86, respectively. Furthermore, aqueous 96 h toxicity tests with N. arenaceodentata indicated that gemfibrozil DBPs elicited increased toxicity compared to the parent compound. While gemfibrozil had an acute LC50 value of 469.85 ± 0.096 mg/L, Cl-gemfibrozil and Br-gemfibrozil had LC50 values of 12.34 ± 0.085 and 9.54 ± 0.086 mg/L, respectively. Although acute toxicity is relatively low, our results indicate that halogenated gemfibrozil DBPs are bioaccumulative and may elicit effects in apex food web organisms prone to accumulation following lifelong exposures.


Subject(s)
Disinfectants , Pharmaceutical Preparations , Water Pollutants, Chemical , Water Purification , Animals , Disinfection , Gemfibrozil/toxicity , Halogenation , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
4.
Environ Sci Technol ; 54(5): 2869-2877, 2020 03 03.
Article in English | MEDLINE | ID: mdl-31888327

ABSTRACT

Bisphenol S (BPS), an alternative for bisphenol A (BPA) that is present in thermal paper and numerous consumer products, has been linked to estrogenic, cytotoxic, genotoxic, neurotoxic, and immunotoxic responses. However, the mechanisms of BPS toxicity remain poorly understood. Here, following exposure to environmentally relevant concentrations ranging from 0.1 to 100 µg/L BPS, transcriptional changes evaluated by enriched gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Ingenuity Pathway Analysis (IPA) predicted cardiac disease and impairment of immune function in zebrafish at the embryo-to-larvae stage. Consistent with impacts predicted by transcriptional changes, significant sublethal impacts were observed ranging from reduced heart rate [8.7 ± 2.4% reductions at 100 µg/L BPS treatment; P < 0.05] to abnormal cardiac morphology [atrial/ventricle area significantly increased; 36.2 ± 9.6% at 100 µg/L BPS treatment; P < 0.05]. RNA-sequencing analysis results also indicated changes in nitric oxide synthetase (NOS2) and interleukin 12 (IL12) after BPS treatment, which was confirmed at the protein level. Increased expression of other cytokine genes was observed in larvae, suggesting inflammatory responses may be contributing to cardiac impairment by BPS. BPS caused cardiotoxicity, which temporally corresponded with inflammatory responses as predicted from RNA sequencing and confirmed at the protein and cellular levels of biological organization. Additional study is needed to find causal linkages between these responses.


Subject(s)
Transcriptome , Zebrafish , Animals , Benzhydryl Compounds , Cardiotoxicity , Phenols , Sulfones
SELECTION OF CITATIONS
SEARCH DETAIL