Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci ; 80(4): S818-27, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25816898

ABSTRACT

Six cultivars of southern highbush (SHB) and rabbiteye (RE) blueberry samples were harvested on 2 different dates. Each treatment combination was pressed 2 times for repeated measures. Fresh juice was characterized for 18 flavor/taste/feeling factor attributes by a descriptive flavor panel. Each sample was measured for sugars, acids, anthocyanidins, Folin-Ciocalteu, soluble solids (BRIX), titratable acidity (TA), and antioxidant capacity (ORACFL ). Flavors were correlated with the composition and physicochemical data. Blueberry flavor correlated with 3 parameters, and negatively correlated with 2. Strawberry correlated with oxalic acid and negatively correlated with sucrose and quinic acid. Sweet aroma correlated with oxalic and citric acid, but negatively correlated with sucrose, quinic, and total acids. Sweet taste correlated with 11 parameters, including the anthocyanidins; and negatively correlated with 3 parameters. Neither bitter nor astringent correlated with any of the antioxidant parameters, but both correlated with total acids. Sour correlated with total acids and TA, while negatively correlating with pH and BRIX:TA. Throat burn correlated with total acids and TA. Principal component analysis negatively related blueberry, sweet aroma, and sweet to sour, bitter, astringent, tongue tingle, and tongue numbness. The information in this component was related to pH, TA, and BRIX:TA ratio. Another principal component related the nonblueberry fruit flavors to BRIX. This PC, also divided the SHB berries from the RE. This work shows that the impact of juice composition on flavor is very complicated and that estimating flavor with physicochemical parameters is complicated by the composition of the juice.


Subject(s)
Acids/analysis , Anthocyanins/analysis , Blueberry Plants , Fruit/chemistry , Plant Preparations/chemistry , Sucrose/analysis , Taste , Antioxidants/analysis , Beverages/analysis , Carbohydrates/analysis , Humans , Hydrogen-Ion Concentration , Odorants , Tongue
2.
Langmuir ; 25(18): 10624-32, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19735134

ABSTRACT

In this work, we examine the interaction between thin films composed of terminally anchored poly(N-isopropyl acrylamide) (PNIPAAm) immersed in water and test surfaces. Understanding this force of interaction can be important when using PNIPAAm surfaces in biotechnological applications such as biological cell cultures. The two novel contributions that are presented here are (1) the use of a recently developed self-consistent field (SCF) theory to predict the force-vs-distance profiles, and (2) the use of a modified polymer scaling theory to estimate the wet film thickness from experimental force-vs-distance profiles. SCF theory was employed to model the equilibrium structure of the uncompressed PNIPAAm chains, and the force between a compressed polymer film and a test surface as a function of wall separation distance. The parameters that were varied include temperature, polymer molecular weight, and surface coverage. The force-vs-distance profiles obtained at low and high temperatures with the SCF theory were in qualitative agreement with the experimentally measured profiles reported in the literature. We also compared the results of our SCF theory to the Alexander de Gennes scaling theory and found agreement at large separation distance. We also propose a method to estimate the wet polymer film thickness from a force-vs-distance profile obtained from an atomic force microscope measurement. The main novelties of this approach are that we employed a density functional theory corrected version of scaling theory proposed by McCoy et al. [McCoy, J. D.; Curro, J. G. J. Chem. Phys. 2005, 122, 164905], and we provide equations to account for various geometries of AFM tips.


Subject(s)
Acrylamides/chemistry , Models, Chemical , Polymers/chemistry , Acrylic Resins , Microscopy, Atomic Force , Molecular Weight , Temperature , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...