Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Biophys Rev ; 5(2): 121-136, 2013 Jun.
Article in English | MEDLINE | ID: mdl-28510158

ABSTRACT

Early development of protein biotherapeutics using recombinant DNA technology involved progress in the areas of cloning, screening, expression and recovery/purification. As the biotechnology industry matured, resulting in marketed products, a greater emphasis was placed on development of formulations and delivery systems requiring a better understanding of the chemical and physical properties of newly developed protein drugs. Biophysical techniques such as analytical ultracentrifugation, dynamic and static light scattering, and circular dichroism were used to study protein-protein interactions during various stages of development of protein therapeutics. These studies included investigation of protein self-association in many of the early development projects including analysis of highly glycosylated proteins expressed in mammalian CHO cell cultures. Assessment of protein-protein interactions during development of an IgG1 monoclonal antibody that binds to IgE were important in understanding the pharmacokinetics and dosing for this important biotherapeutic used to treat severe allergic IgE-mediated asthma. These studies were extended to the investigation of monoclonal antibody-antigen interactions in human serum using the fluorescent detection system of the analytical ultracentrifuge. Analysis by sedimentation velocity analytical ultracentrifugation was also used to investigate competitive binding to monoclonal antibody targets. Recent development of high concentration protein formulations for subcutaneous administration of therapeutics posed challenges, which resulted in the use of dynamic and static light scattering, and preparative analytical ultracentrifugation to understand the self-association and rheological properties of concentrated monoclonal antibody solutions.

2.
AAPS J ; 8(3): E580-9, 2006 Sep 22.
Article in English | MEDLINE | ID: mdl-17025276

ABSTRACT

Analytical ultracentrifugation (AUC) and field flow fractionation (FFF) are 2 important biophysical methods for measuring protein aggregates. Both methods can separate protein monomer from its aggregate forms under a broad range of solution conditions. Recent advances in instrumentation and data analysis, particularly in the field of analytical ultracentrifugation technology, have significantly improved the capability and sensitivity of these biophysical methods for detecting protein aggregates. These advances have resulted in an increased use of these methods in the biopharmaceutical industry for characterization of therapeutic proteins. However, despite their many advantages over conventional methods, the difficulty in the use of the instrumentation and the complexity of data analysis process, have often hampered the widespread use and proper interpretation of data. This article reviews the recent progress in both technologies, and a few case studies are also presented to discuss their advantages and limitations.


Subject(s)
Fractionation, Field Flow/methods , Immunoglobulin G/chemistry , Macromolecular Substances/chemistry , Ultracentrifugation/methods , Weights and Measures , Biological Products/chemistry
3.
J Pharm Sci ; 94(9): 1928-40, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16052543

ABSTRACT

This study was conducted to investigate the effect of reversible protein self-association on the viscosity of concentrated monoclonal antibody solutions. The viscosities of the monoclonal antibody solutions were measured by either a capillary viscometer or a cone-plate rheometer at different protein concentrations, pH, and ionic strength. Soluble aggregates were determined by size exclusion chromatography, light scattering, and analytical ultracentrifugation. Self-association of protein at high protein concentration was monitored by sedimentation equilibrium analysis using a preparative ultracentrifuge and a microfractionator. The viscosity of one of the monoclonal antibodies investigated is highly dependent on protein concentration, pH, and ionic strength of buffer and charged excipients. This antibody shows the highest viscosity near its pI at low ionic strength conditions. Sedimentation equilibrium analysis suggests that this antibody tends to reversibly self-associate at high protein concentration. The self-association appears to be quite weak and is not detectable by sedimentation velocity and size exclusion chromatography at low protein concentration. There are no significant differences in the amounts of non-dissociable soluble aggregates formed between low viscosity and high viscosity samples. These results suggest that the reversible multivalent self-association of this protein appears to be mediated mainly by electrostatic interactions of charged residues and results in unusually high viscosity of this monoclonal antibody in solution at low ionic strength conditions.


Subject(s)
Antibodies, Monoclonal/chemistry , Solutions/chemistry , Animals , CHO Cells , Chemistry, Pharmaceutical , Cricetinae , Humans , Hydrogen-Ion Concentration , Osmolar Concentration , Pharmaceutical Solutions/chemistry , Salts/chemistry , Sodium Chloride/chemistry , Viscosity
4.
AAPS PharmSci ; 5(2): E10, 2003.
Article in English | MEDLINE | ID: mdl-12866937

ABSTRACT

The purpose of this study was to evaluate the mechanisms of aggregate formation and excipient stabilization in freeze-dried formulations of a recombinant humanized monoclonal antibody. Protein degradation was measured using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) and native size exclusion chromatography, and protein structure was studied using Fourier transform-infrared spectrometry and circular dichroism. The results showed that protein aggregates present following reconstitution were composed of native antibody structure and a reduced amount of free thiol when compared to protein monomer, which implied that intermolecular disulfides were involved in the aggregation mechanism. An excipient-free formulation resulted in reversible solid-state protein structural alteration and increased aggregation during storage. This correlated with dehydration to an extent that the amount of water was less than the estimated number of surface-accessible hydrogen-bonding sites on the protein. Improved native-like solid-state protein structure and reduced aggregation were obtained by formulation with enough carbohydrate to fulfill the hydrogen-bonding sites on the surface of the protein. Carbohydrate in excess of this concentration has less of an influence on protein aggregation. Reduced aggregation during storage was obtained by the addition of sufficient excipient to both stabilize solid-state protein structure and provide an environment that consisted of an amorphous glassy state matrix.


Subject(s)
Antibodies, Monoclonal/drug effects , Carbohydrates/pharmacology , Drug Stability , Antibodies, Monoclonal/metabolism , Drug Storage , Excipients , Freeze Drying , Kinetics , Protein Conformation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...