Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 195(10): 1139, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37665531

ABSTRACT

Protected areas are the cornerstone of biodiversity and serve as a haven for biodiversity conservation. However, due to immense anthropic pressures and ongoing changes in climate, the protected reserves are under immense threat. Human interference through land system changes is a major precusor of fragmentation of landscapes resulting in the decline of Himalayan biodiversity. In this context, this research assessed land use land cover changes (LULCCs) and fragmentation within and outside the Dachigam National Park (DNP) using remote sensing data, GIS-based models and ground truth over the past 55 years (1965-2020). Landscape Fragmentation Tool (LFT) helped to compute edge effect, patchiness, perforation and core areas. The Land Change Modeller (LCM) of IDRISI TerrSet was used for simulating the future LULC for the years 2030, 2050, 2700 and 2100. The analysis of LULCCs showed that built-up and aquatic vegetation expanded by 326% and 174%, respectively in the vicinity of the DNP. The area under agriculture, scrub and pasture decreased primarily due to intensified land use activities. Within the DNP, the area under forest cover declined by 7%. A substantial decrease was observed in the core zone both within (39%) and outside (30%) the DNP indicative of fragmentation of natural habitats. LCM analysis projected 10% increase in the built-up extents besides forests, shrublands and pastures. This knowledge generated in this study shall form an important baseline for understanding and characterising the human-wildlife relationship, initiating long-term ecological research (LTER) on naturally vegetated and aquatic ecosystems (primarily Dal Lake) of the region.


Subject(s)
Ecosystem , Parks, Recreational , Humans , Environmental Monitoring , India , Agriculture
2.
Environ Res ; 229: 115967, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37086883

ABSTRACT

Wetland degradation through a diverse spectrum of anthropogenic stressors worldwide has taken a heavy toll on the health of wetlands. This study examined the health of a semi-urban wetland Bodsar, located in the Kashmir Himalaya using multicriteria analysis approach assimilating data on land use land cover (LULC), landscape fragmentation, soil loss, and demography. Wetland and catchment-scale land system changes from 1980 to 2022 were assessed using high-resolution imagery. Fragmentation of the natural landscape was assessed using the Landscape Fragmentation Tool (LFT) and soil loss was assessed using the Revised Universal Soil Loss Equation (RUSLE). In addition, the water quality was examined at 12 sites distributed across the wetland using standard methods. Satellite data revealed 12 categories of land use with areas under exposed rock, orchards, built-up and sparse forest having increased by 1005%, 623%, 274%, and 37% respectively. LFT indicated that the core (>500 acres) and core (<250 acres) zones decreased by approximately 16% and 64%, respectively, whereas the areas under the perforated, edge and patch classes increased significantly. RUSLE estimates show a ∼77% increase in soil erosion from 116.26 Mg a-1 in 1980 to 205.68 Mg a-1 in 2022, mostly due to changes in LULC. Total phosphorus (0.195-2.04 mg L -1), nitrate nitrogen (0.306-2.79 mg L -1), and total dissolved solids (543-774 mg L-1) indicated nutrient enrichment of the wetland influenced by anthropogenically-driven land system changes. The wetland degradation index revealed that 21% of the wetland experienced high-to-severe degradation, 62% experienced moderate degradation, and 17% did not face any significant degradation pressure. The novel GIS-based approach adopted in this study can act as a prototype for ascertaining the catchment-scale degradation of wetlands worldwide.


Subject(s)
Geographic Information Systems , Wetlands , Environmental Monitoring/methods , Soil , Forests , Conservation of Natural Resources
3.
Environ Monit Assess ; 192(10): 635, 2020 Sep 12.
Article in English | MEDLINE | ID: mdl-32918115

ABSTRACT

Wetlands are among the most vulnerable and dynamic ecosystems of the world. Any change in the anthropogenic footprint or climate affects the health of these pristine ecologically and socioeconomically important ecosystems. In the present study, land use land cover changes (LULCC) and fragmentation of natural landscape changes in an urban wetland, Khushalsar, located in the heart of the Srinagar City, were assessed using high-resolution satellite data, geospatial modeling approach, and ground observations over the last ~ 5 decades (1965 and 2018). The spatiotemporal changes in LULC of the wetland were assessed for 3 time periods that include 1965-1980, 1980-2018, and 1965-2018. Additionally, landscape fragmentation tool (LFT) was used to quantify fragmentation of land cover. The analysis of LULCC indicated that built-up areas in the vicinity of the wetland increased by 510% between 1965 and 2018. The aquatic vegetation and marshy lands increased by 150% and 33% respectively. The area under agriculture, plantation, open water, and barren lands decreased mostly taken over by built-up areas. Within the wetland, the area under open water spread reduced by 75% while the aquatic vegetation increased by 150% from 1965 to 2018. The built-up areas including roads also showed a substantial increase. The LFT analysis revealed four categories of landscapes i.e., patch, edge, perforated, and core areas. Since the natural land cover types were taken over by land use predominantly built-up areas, the core natural areas and perforated landscapes in the Khushalsar shrunk by 34% and 94% respectively indicating fragmentation of natural environment. The lack of sewage treatment facility, reckless unplanned urbanization within and in the vicinity of the wetland, is responsible for the degradation of the Khushalsar wetland.


Subject(s)
Ecosystem , Wetlands , Cities , Conservation of Natural Resources , Environmental Monitoring , India , Remote Sensing Technology
4.
Environ Monit Assess ; 192(2): 121, 2020 Jan 17.
Article in English | MEDLINE | ID: mdl-31953600

ABSTRACT

The lakes of Kashmir Valley show multiple signs of deterioration. This study integrated multiple datasets pertaining to the land system, lake bathymetry and water quality in GIS environment to limnologically characterize the Nigeen Lake. Settlements in the vicinity of the lake were mapped using high-resolution satellite data of 2003 and 2016. Lake depths measured at 235 points spread across the lake surface were used to produce the detailed bathymetry of Nigeen Lake. Surface water quality data at five sites pertaining to 22 physico-chemical parameters was analyzed for limnological characterization of the lake. The quality of lake water is within the permissible limits as per the drinking water standards set forth by World Health Organization (WHO); however, the values of secchi-disc transparency (0.52-1.39 m) and total phosphorous (184-687 µg L-1) indicate hypereutrophic state of the lake. The settlements in the lake vicinity expanded by 30% from 2003 to 2016. The bathymetry analysis revealed that the lake depth varied from 1.02 to 6.07 m. The reckless urbanization and inadequate sewage treatment system together with high residence time of water in the Nigeen Lake are responsible for enhanced nutrient enrichment and deterioration in water quality.


Subject(s)
Environmental Monitoring , Lakes/chemistry , Phosphorus/analysis , Urbanization , Water Quality/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...