Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 818: 151716, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-34800445

ABSTRACT

Fungal spores make up a significant proportion of organic matter within the air. Allergic sensitisation to fungi is associated with conditions including allergic fungal airway disease. This systematic review analyses outdoor fungal spore seasonality across Europe and considers the implications for health. Seventy-four studies met the inclusion criteria, the majority of which (n = 64) were observational sampling studies published between 1978 and 2020. The most commonly reported genera were the known allergens Alternaria and Cladosporium, measured in 52 and 49 studies, respectively. Both displayed statistically significant increased season length in south-westerly (Mediterranean) versus north-easterly (Atlantic and Continental) regions. Although there was a trend for reduced peak or annual Alternaria and Cladosporium spore concentrations in more northernly locations, this was not statistically significant. Peak spore concentrations of Alternaria and Cladosporium exceeded clinical thresholds in nearly all locations, with median peak concentrations of 665 and 18,827 per m3, respectively. Meteorological variables, predominantly temperature, precipitation and relative humidity, were the main factors associated with fungal seasonality. Land-use was identified as another important factor, particularly proximity to agricultural and coastal areas. While correlations of increased season length or decreased annual spore concentrations with increasing average temperatures were reported in multi-decade sampling studies, the number of such studies was too small to make any definitive conclusions. Further, up-to-date studies covering underrepresented geographical regions and fungal taxa (including the use of modern molecular techniques), and the impact of land-use and climate change will help address remaining knowledge gaps. Such knowledge will help to better understand fungal allergy, develop improved fungal spore calendars and forecasts with greater geographical coverage, and promote increased awareness and management strategies for those with allergic fungal disease.


Subject(s)
Air Microbiology , Environmental Monitoring , Alternaria , Europe , Seasons , Spores, Fungal
2.
J Antimicrob Chemother ; 75(12): 3501-3509, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32862231

ABSTRACT

BACKGROUND: Infections caused by triazole drug-resistant Aspergillus fumigatus are an increasing problem. The sensitivity of standard culture is poor, abrogating susceptibility testing. Early detection of resistance can improve patient outcomes, yet tools for this purpose are limited. OBJECTIVES: To develop and validate a pyrosequencing technique to detect resistance-conferring cyp51A polymorphisms from clinical respiratory specimens and A. fumigatus isolates. METHODS: Method validation was performed by Sanger sequencing and pyrosequencing of 50 A. fumigatus isolates with a spectrum of triazole susceptibility patterns. Then, 326 Aspergillus quantitative PCR (qPCR)-positive respiratory samples collected over a 27 month period (January 2017-March 2019) from 160 patients at the UK National Aspergillosis Centre were assessed by cyp51A pyrosequencing. The Sanger sequencing and pyrosequencing results were compared with those from high-volume culture and standard susceptibility testing. RESULTS: The cyp51A genotypes of the 50 isolates analysed by pyrosequencing and Sanger sequencing matched. Of the 326 Aspergillus qPCR-positive respiratory specimens, 71.2% were reported with no A. fumigatus growth. Of these, 56.9% (132/232) demonstrated a WT cyp51A genotype and 31.5% (73/232) a resistant genotype by pyrosequencing. Pyrosequencing identified the environmental TR34/L98H mutation in 18.7% (61/326) of the samples in contrast to 6.4% (21/326) pan-azole resistance detected by culture. Importantly, pyrosequencing detected resistance earlier than culture in 23.3% of specimens. CONCLUSIONS: The pyrosequencing assay described could detect a wide range of cyp51A polymorphisms associated with triazole resistance, including those not identified by commercial assays. This method allowed prompt recognition of resistance and the selection of appropriate antifungal treatment when culture was negative.


Subject(s)
Aspergillus fumigatus , Triazoles , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Aspergillus fumigatus/genetics , Azoles , Cytochrome P-450 Enzyme System/genetics , Drug Resistance, Fungal , Fungal Proteins/genetics , High-Throughput Nucleotide Sequencing , Humans , Microbial Sensitivity Tests , Triazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...