Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Environ Health Perspect ; 131(8): 87018, 2023 08.
Article in English | MEDLINE | ID: mdl-37616159

ABSTRACT

BACKGROUND: Concentrated animal feeding operations (CAFOs) emit pollutants that can cause negative impacts on human health. The concentration of hog production in North Carolina raises concerns regarding the disproportionate exposure of vulnerable communities to air pollution from CAFOs. OBJECTIVES: We investigated whether exposure to gaseous ammonia (NH3) and hydrogen sulfide (H2S) (in 2019) differs between subpopulations by examining demographics, including race/ethnicity, age, educational attainment, language proficiency, and socioeconomic status. METHODS: We used an Air Monitoring Station (AMS)/Environmental Protection Agency (EPA) Regulatory Model (AERMOD)-based Human Exposure Model (version 3) to estimate ambient concentrations of NH3 and H2S from hog farms in Duplin County and its surrounding counties in North Carolina and estimate subsequent exposures of communities within 50km of Duplin County, North Carolina, or the Duplin County Region. We combined estimated exposures with 2016 American Community Summary Census data, at the block group level, using spatial analysis to investigate whether exposures to these pollutants differ by race and ethnicity, age, income, education, and language proficiency. Based on these estimations, we assessed associated exposure risks to the impacted communities and used multivariable regression modeling to evaluate the relationship between average ammonia exposures from Duplin regional hog farms and the presence of vulnerable populations. RESULTS: The average [±standard deviation (SD)] annual estimated concentration of NH3 and H2S in the Duplin County Region is 1.75±2.81 µg/m3 and 0.0087±0.014 µg/m3, respectively. The maximum average annual ambient concentrations are estimated at 54.27±4.12 µg/m3 and 0.54±0.041 µg/m3 for NH3 and H2S, respectively. Our descriptive analysis reveals that people of low income, people of color, people with low educational attainment, and the linguistically isolated in the Duplin Region are disproportionately exposed to higher levels of pollutants than the average exposure for residents. Alternatively, our statistical results suggests that after adjusting for covariates, communities of color are associated with 1.70% (95% CI: -3.79, 0.44) lower NH3 concentrations per 1-SD increase. One-standard deviation increases in the adults with low educational attainment and children <19 years of age is associated with 1.26% (95% CI: -0.77, 3.33) and 1.20% (95% CI: -0.62, 3.05) higher NH3 exposure per 1-SD increase, respectively. DISCUSSION: Exposures to NH3 and H2S differed by race and ethnicity, educational attainment, language proficiency, and socioeconomic status. The observed associations between exposure to CAFO-generated pollutants and sociodemographic indicators differed among demographics. The disproportionate distribution of hog facilities and resulting pollutant exposures among communities may have adverse environmental and human health impacts, raising environmental justice concerns. https://doi.org/10.1289/EHP11344.


Subject(s)
Air Pollution , Environmental Pollutants , Adult , Animals , Child , Humans , Swine , Ammonia , Environmental Justice , North Carolina
2.
Atmos Environ (1994) ; 254: 118386, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33841025

ABSTRACT

One of the multi-facet impacts of lockdowns during the unprecedented COVID-19 pandemic was restricted economic and transport activities. This has resulted in the reduction of air pollution concentrations observed globally. This study is aimed at examining the concentration changes in air pollutants (i.e., carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and particulate matters (PM2.5 and PM10) during the period March-April 2020. Data from both satellite observations (for NO2) and ground-based measurements (for all other pollutants) were utilized to analyze the changes when compared against the same months between 2015 and 2019. Globally, space borne NO2 column observations observed by satellite (OMI on Aura) were reduced by approximately 9.19% and 9.57%, in March and April 2020, respectively because of public health measures enforced to contain the coronavirus disease outbreak (COVID-19). On a regional scale and after accounting for the effects of meteorological variability, most monitoring sites in Europe, USA, China, and India showed declines in CO, NO2, SO2, PM2.5, and PM10 concentrations during the period of analysis. An increase in O3 concentrations occurred during the same period. Meanwhile, four major cities case studies i.e. in New York City (USA), Milan (Italy), Wuhan (China), and New Delhi (India) have also shown a similar reduction trends as observed on the regional scale, and an increase in ozone concentration. This study highlights that the reductions in air pollutant concentrations have overall improved global air quality likely driven in part by economic slowdowns resulting from the global pandemic.

3.
J Air Waste Manag Assoc ; 71(1): 102-114, 2021 01.
Article in English | MEDLINE | ID: mdl-33125305

ABSTRACT

Emissions of ammonia (NH3), oxides of nitrogen (NOx; NO +NO2), and nitrous oxide (N2O) from biomass burning were quantified on a global scale for 2001 to 2015. On average biomass burning emissions at a global scale over the period were as follows: 4.53 ± 0.51 Tg NH3 year-1, 14.65 ± 1.60 Tg NOx year-1, and 0.97 ± 0.11 Tg N2O year-1. Emissions were comparable to other emissions databases. Statistical regression models were developed to project NH3, NOx, and N2O emissions from biomass burning as a function of burn area. Two future climate scenarios (RCP 4.5 and RCP 8.5) were analyzed for 2050-2055 ("mid-century") and 2090-2095 ("end of century"). Under the assumptions made in this study, the results indicate emissions of all species are projected to increase under both the RCP 4.5 and RCP 8.5 climate scenarios. Implications: This manuscript quantifies emissions of NH3, NOx, and N2O on a global scale from biomass burning from 2001-2015 then creates regression models to predict emissions based on climate change. Because reactive nitrogen emissions have such an important role in the global nitrogen cycle, changes in these emissions could lead to a number of health and environmental impacts.


Subject(s)
Climate Change , Nitrous Oxide , Ammonia , Biomass , Nitrogen
4.
Sci Total Environ ; 706: 135290, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31838459

ABSTRACT

The goal of this study is to determine how much ammonia/nitrogen is being deposited to the Maryland Eastern Shore land and the Chesapeake Bay from poultry operations on Maryland's Eastern Shore. We simulated the fate of ammonia/nitrogen emitted (using emission factors from the U.S. EPA in conjunction with Carnegie-Mellon University) from 603 poultry facilities using the air quality model, AERMOD. The model domain was approximately 134 km by 230 km (and covers the full land area of Maryland's Eastern Shore), with a horizontal resolution of 2 km by 2 km. Ammonia concentration observations were made at 23 sites across Maryland's Eastern Shore during two periods (September and October 2017) in order to calibrate the model. An ammonia deposition velocity of 2.4 cm/sec was selected based on the sensitivity analysis of results for the simulation of a large poultry facility, and this value fell within the range of measurements reported in the scientific literature downwind of Concentrated Animal Feeding Operations (CAFOs). The ammonia deposition velocity of 2.4 cm/s leads to an estimated total annual ammonia deposition of 11,100 Megagrams/year (10,600 Mg/yr deposition to land, and 508 Mg/yr deposition to water (1 Mg = 1,000,000 g = 1.1023 US Tons)). In addition, model simulations indicate that ~72.4% of ammonia emissions from poultry animal feeding operations would be deposited within the modeling domain. However, this deposited ammonia/nitrogen may be transported through waterways from the land mass and ground water to the Chesapeake Bay. A comprehensive sensitivity analysis of the assumed ammonia deposition velocity (ranging from 0.15 to 3.0 cm/s) on estimated ammonia annual deposition is provided. Using the lower limit of an ammonia deposition velocity of 0.15 cm/s gives much smaller estimated total annual ammonia deposition of 2,040 Mg/yr (1,880 Mg/yr deposition to land and 163 Mg/yr deposition to water).


Subject(s)
Poultry , Air Pollutants , Ammonia , Animals , Bays , Environmental Monitoring , Maryland
5.
Environ Sci Pollut Res Int ; 24(32): 25179-25189, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28924742

ABSTRACT

Delhi is one among the highly air polluted cities in the world. Absence of causal relationship between emitting sources of PM2.5 and their impact has resulted in inadequate actions. This research combines a set of innovative and state-of-the-art analytical techniques to establish relative predominance of PM2.5 sources. Air quality sampling at six sites in summer and winter for 40 days (at each site) showed alarmingly high PM2.5 concentrations (340 ± 135 µg/m3). The collected PM2.5 was subjected to chemical speciation including ions, metals, organic and elemental carbons which followed application of chemical mass balance technique for source apportionment. The source apportionment results showed that secondary aerosols, biomass burning (BMB), vehicles, fugitive dust, coal and fly ash, and municipal solid waste burning were the important sources. It was observed that secondary aerosol and crustal matter accounted for over 50% of mass. The PM2.5 levels were not solely result of emissions from Delhi; it is a larger regional problem caused by contiguous urban agglomerations. It was argued that emission reduction of precursors of secondary aerosol, SO2, NOx, and volatile organic compounds, which are unabated, is essential. A substantial reduction in BMB and suspension of crustal dust is equally important to ensure compliance with air quality standards.


Subject(s)
Aerosols , Air Pollutants/analysis , Air Pollution , Particulate Matter/analysis , Solid Waste , Aerosols/analysis , Biomass , Carbon/analysis , Cities , Coal , Coal Ash , Dust/analysis , Environmental Monitoring/methods , Fires , India , Seasons
6.
Environ Sci Pollut Res Int ; 24(1): 164-179, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27704381

ABSTRACT

Ozone dynamics in two urban background atmospheres over middle Indo-Gangetic Plain (IGP) were studied in two contexts: total columnar and ground-level ozone. In terms of total columnar ozone (TCO), emphases were made to compare satellite-based retrieval with ground-based observation and existing trend in decadal and seasonal variation was also identified. Both satellite-retrieved (Aura Ozone Monitoring Instrument-Differential Optical Absorption Spectroscopy (OMI-DOAS)) and ground-based observations (IMD-O3) revealed satisfying agreement with OMI-DOAS observation over predicting TCO with a positive bias of 7.24 % under all-sky conditions. Minor variation between daily daytime (r = 0.54; R 2 = 29 %; n = 275) and satellite overpass time-averaged TCO (r = 0.58; R 2 = 34 %; n = 208) was also recognized. A consistent and clear seasonal trend in columnar ozone (2005-2015) was noted with summertime (March-June) maxima (Varanasi, 290.9 ± 8.8; Lucknow, 295.6 ± 9.5 DU) and wintertime (December-February) minima (Varanasi, 257.4 ± 10.1; Lucknow, 258.8 ± 8.8 DU). Seasonal trend decomposition based on locally weighted regression smoothing technique identified marginally decreasing trend (Varanasi, 0.0084; Lucknow, 0.0096 DU year-1) especially due to reduction in monsoon time minima and summertime maxima. In continuation to TCO, variation in ground-level ozone in terms of seasonality and precursor gases were also analysed from September 2014 to August 2015. Both stations registered similar pattern of variation with Lucknow representing slightly higher annual mean (44.3 ± 30.6; range, 1.5-309.1 µg/m3) over Varanasi (38.5 ± 17.7; range, 4.9-104.2 µg/m3). Variation in ground-level ozone was further explained in terms water vapour, atmospheric boundary layer height and solar radiation. Ambient water vapour content was found to associate negatively (r = -0.28, n = 284) with ground-level ozone with considerable seasonal variation in Varanasi. Implication of solar radiation on formation of ground-level ozone was overall positive (Varanasi, 0.60; Lucknow, 0.26), while season-specific association was recorded in case of atmospheric boundary layer.


Subject(s)
Ozone/analysis , Air Pollutants/analysis , Air Pollutants/chemistry , Atmosphere/analysis , Climate , Environmental Monitoring/methods , India , Ozone/chemistry , Seasons
7.
J Air Waste Manag Assoc ; 67(4): 421-430, 2017 04.
Article in English | MEDLINE | ID: mdl-27731783

ABSTRACT

This study integrates the relationship between measured surface concentrations of particulate matter 10 µm or less in diameter (PM10), satellite-derived aerosol optical depth (AOD), and meteorology in Roda, Virginia, during 2008. A multiple regression model was developed to predict the concentrations of particles 2.5 µm or less in diameter (PM2.5) at an additional location in the Appalachia region, Bristol, TN. The model was developed by combining AOD retrievals from Moderate Resolution Imaging Spectro-radiometer (MODIS) sensor on board the EOS Terra and Aqua Satellites with the surface meteorological observations. The multiple regression model predicted PM2.5 (r2 = 0.62), and the two-variable (AOD-PM2.5) model predicted PM2.5 (r2 = 0.4). The developed model was validated using particulate matter recordings and meteorology observations from another location in the Appalachia region, Hazard, Kentucky. The model was extrapolated to the Roda, VA, sampling site to predict PM2.5 mass concentrations. We used 10 km x 10 km resolution MODIS 550 nm AOD to predict ground level PM2.5. For the relevant period in 2008, in Roda, VA, the predicted PM2.5 mass concentration is 9.11 ± 5.16 µg m-3 (mean ± 1SD). IMPLICATIONS: This is the first study that couples ground-based Particulate Matter measurements with satellite retrievals to predict surface air pollution at Roda, Virginia. Roda is representative of the Appalachian communities that are commonly located in narrow valleys, or "hollows," where homes are placed directly along the roads in a region of active mountaintop mining operations. Our study suggests that proximity to heavy coal truck traffic subjects these communities to chronic exposure to coal dust and leads us to conclude that there is an urgent need for new regulations to address the primary sources of this particulate matter.


Subject(s)
Air Pollution/analysis , Coal Mining , Models, Theoretical , Particulate Matter/analysis , Satellite Imagery , Aerosols/analysis , Air Pollutants/analysis , Coal , Environmental Monitoring/methods , Humans , Kentucky , Regression Analysis , Virginia
8.
Environ Sci Technol ; 48(3): 1609-17, 2014.
Article in English | MEDLINE | ID: mdl-24387076

ABSTRACT

Hydrogen sulfide (H2S) emissions were determined from an anaerobic lagoon at a swine concentrated animal feeding operation (CAFO) in North Carolina. Measurements of H2S were made continuously from an anaerobic lagoon using a dynamic flow-through chamber for ∼ 1 week during each of the four seasonal periods from June 2007 through April 2008. H2S lagoon fluxes were highest in the summer with a flux of 3.81 ± 3.24 µg m(-2) min(-1) and lowest in the winter with a flux of 0.08 ± 0.09 µg m(-2) min(-1). An air-manure interface (A-MI) mass transfer model was developed to predict H2S manure emissions. The accuracy of the A-MI mass transfer model in predicting H2S manure emissions was comprehensively evaluated by comparing the model predicted emissions to the continuously measured lagoon emissions using data from all four seasonal periods. In comparison to this measurement data, the A-MI mass transfer model performed well in predicting H2S fluxes with a slope of 1.13 and an r(2) value of 0.60, and a mean bias value of 0.655 µg m(-2) min(-1). The A-MI mass transfer model also performed fairly well in predicting diurnal H2S lagoon flux trends.


Subject(s)
Air Pollutants/analysis , Animal Husbandry , Hydrogen Sulfide/analysis , Models, Theoretical , Animals , Manure/analysis , North Carolina , Seasons , Sus scrofa
9.
Environ Sci Pollut Res Int ; 20(11): 8092-131, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23982822

ABSTRACT

Gaseous ammonia (NH3) is the most abundant alkaline gas in the atmosphere. In addition, it is a major component of total reactive nitrogen. The largest source of NH3 emissions is agriculture, including animal husbandry and NH3-based fertilizer applications. Other sources of NH3 include industrial processes, vehicular emissions and volatilization from soils and oceans. Recent studies have indicated that NH3 emissions have been increasing over the last few decades on a global scale. This is a concern because NH3 plays a significant role in the formation of atmospheric particulate matter, visibility degradation and atmospheric deposition of nitrogen to sensitive ecosystems. Thus, the increase in NH3 emissions negatively influences environmental and public health as well as climate change. For these reasons, it is important to have a clear understanding of the sources, deposition and atmospheric behaviour of NH3. Over the last two decades, a number of research papers have addressed pertinent issues related to NH3 emissions into the atmosphere at global, regional and local scales. This review article integrates the knowledge available on atmospheric NH3 from the literature in a systematic manner, describes the environmental implications of unabated NH3 emissions and provides a scientific basis for developing effective control strategies for NH3.


Subject(s)
Air Pollutants/analysis , Ammonia/analysis , Atmosphere/chemistry , Agriculture , Air Pollution/statistics & numerical data , Animal Husbandry , Climate Change , Ecosystem , Environmental Monitoring , Fertilizers , Nitrogen/analysis , Soil/chemistry , Volatilization
10.
Environ Sci Technol ; 43(12): 4234-40, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19603628

ABSTRACT

Scientific assessments of agricultural air quality, including estimates of emissions and potential sequestration of greenhouse gases, are an important emerging area of environmental science that offers significant challenges to policy and regulatory authorities. Improvements are needed in measurements, modeling, emission controls, and farm operation management. Controlling emissions of gases and particulate matter from agriculture is notoriously difficult as this sector affects the most basic need of humans, i.e., food. Current policies combine an inadequate science covering a very disparate range of activities in a complex industry with social and political overlays. Moreover, agricultural emissions derive from both area and point sources. In the United States, agricultural emissions play an important role in several atmospherically mediated processes of environmental and public health concerns. These atmospheric processes affect local and regional environmental quality, including odor, particulate matter (PM) exposure, eutrophication, acidification, exposure to toxics, climate, and pathogens. Agricultural emissions also contribute to the global problems caused by greenhouse gas emissions. Agricultural emissions are variable in space and time and in how they interact within the various processes and media affected. Most important in the U.S. are ammonia (where agriculture accounts for approximately 90% of total emissions), reduced sulfur (unquantified), PM25 (approximately 16%), PM110 (approximately 18%), methane (approximately 29%), nitrous oxide (approximately 72%), and odor and emissions of pathogens (both unquantified). Agriculture also consumes fossil fuels for fertilizer production and farm operations, thus emitting carbon dioxide (CO2), oxides of nitrogen (NO(x)), sulfur oxides (SO(x)), and particulates. Current research priorities include the quantification of point and nonpoint sources, the biosphere-atmosphere exchange of ammonia, reduced sulfur compounds, volatile organic compounds, greenhouse gases, odor and pathogens, the quantification of landscape processes, and the primary and secondary emissions of PM. Given the serious concerns raised regarding the amount and the impacts of agricultural air emissions, policies must be pursued and regulations must be enacted in orderto make real progress in reducing these emissions and their associated environmental impacts.


Subject(s)
Agriculture , Air Pollution/legislation & jurisprudence , Climate , Research/trends , Air Pollutants/chemistry , Ammonia/chemistry , Public Policy
12.
J Air Waste Manag Assoc ; 58(9): 1130-44, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18817106

ABSTRACT

Ammonia (NH3) fluxes from waste treatment lagoons and barns at two conventional swine farms in eastern North Carolina were measured. The waste treatment lagoon data were analyzed to elucidate the temporal (seasonal and diurnal) variability and to derive regression relationships between NH3 flux and lagoon temperature, pH and ammonium content of the lagoon, and the most relevant meteorological parameters. NH3 fluxes were measured at various sampling locations on the lagoons by a flowthrough dynamic chamber system interfaced to an environmentally controlled mobile laboratory. Two sets of open-path Fourier transform infrared (FTIR) spectrometers were also used to measure NH3 concentrations for estimating NH3 emissions from the animal housing units (barns) at the lagoon and spray technology (LST) sites. Two different types of ventilation systems were used at the two farms. Moore farm used fan ventilation, and Stokes farm used natural ventilation. The early fall and winter season intensive measurement campaigns were conducted during September 9 to October 11, 2002 (lagoon temperature ranged from 21.2 to 33.6 degrees C) and January 6 to February 2, 2003 (lagoon temperature ranged from 1.7 to 12 degrees C), respectively. Significant differences in seasonal NH3 fluxes from the waste treatment lagoons were found at both farms. Typical diurnal variation of NH3 flux with its maximum value in the afternoon was observed during both experimental periods. Exponentially increasing flux with increasing surface lagoon temperature was observed, and a linear regression relationship between logarithm of NH3 flux and lagoon surface temperature (T1) was obtained. Correlations between lagoon NH3 flux and chemical parameters, such as pH, total Kjeldahl nitrogen (TKN), and total ammoniacal nitrogen (TAN) were found to be statistically insignificant or weak. In addition to lagoon surface temperature, the difference (D) between air temperature and the lagoon surface temperature was also found to influence the NH3 flux, especially when D > 0 (i.e., air hotter than lagoon). This hot-air effect is included in the statistical-observational model obtained in this study, which was used further in the companion study (Part II), to compare the emissions from potential environmental superior technologies to evaluate the effectiveness of each technology.


Subject(s)
Agriculture , Air Pollutants, Occupational/analysis , Ammonia/analysis , Swine/physiology , Waste Disposal, Fluid/methods , Animals , Environmental Monitoring , North Carolina
13.
J Air Waste Manag Assoc ; 58(9): 1145-57, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18817107

ABSTRACT

The need for developing environmentally superior and sustainable solutions for managing the animal waste at commercial swine farms in eastern North Carolina has been recognized in recent years. Program OPEN (Odor, Pathogens, and Emissions of Nitrogen), funded by the North Carolina State University Animal and Poultry Waste Management Center (APWMC), was initiated and charged with the evaluation of potential environmentally superior technologies (ESTs) that have been developed and implemented at selected swine farms or facilities. The OPEN program has demonstrated the effectiveness of a new paradigm for policy-relevant environmental research related to North Carolina's animal waste management programs. This new paradigm is based on a commitment to improve scientific understanding associated with a wide array of environmental issues (i.e., issues related to the movement of N from animal waste into air, water, and soil media; the transmission of odor and odorants; disease-transmitting vectors; and airborne pathogens). The primary focus of this paper is on emissions of ammonia (NH3) from some potential ESTs that were being evaluated at full-scale swine facilities. During 2-week-long periods in two different seasons (warm and cold), NH3 fluxes from water-holding structures and NH3 emissions from animal houses or barns were measured at six potential EST sites: (1) Barham farm--in-ground ambient temperature anaerobic digester/energy recovery/greenhouse vegetable production system; (2) BOC #93 farm--upflow biofiltration system--EKOKAN; (3) Carrolls farm--aerobic blanket system--ISSUES-ABS; (4) Corbett #1 farm--solids separation/ gasification for energy and ash recovery centralized system--BEST; (5) Corbett #2 farm--solid separation/ reciprocating water technology--ReCip; and (6) Vestal farm--Recycling of Nutrient, Energy and Water System--ISSUES-RENEW. The ESTs were compared with similar measurements made at two conventional lagoon and spray technology (LST) farms (Moore farm and Stokes farm). A flow-through dynamic chamber system and two sets of open-path Fourier transform infrared (OP-FTIR) spectrometers measured NH3 fluxes continuously from water-holding structures and emissions from housing units at the EST and conventional LST sites. A statistical-observational model for lagoon NH3 flux was developed using a multiple linear regression analysis of 15-min averaged NH3 flux data against the relevant environmental parameters measured at the two conventional farms during two different seasons of the year. This was used to compare the water-holding structures at ESTs with those from lagoons at conventional sites under similar environmental conditions. Percentage reductions in NH3 emissions from different components of each potential EST, as well as the whole farm on which the EST was located were evaluated from the estimated emissions from water-holding structures, barns, etc., all normalized by the appropriate nitrogen excretion rate at the potential EST farm, as well as from the appropriate conventional farm. This study showed that ammonia emissions were reduced by all but one potential EST for both experimental periods. However, on the basis of our evaluation results and analysis and available information in the scientific literature, the evaluated alternative technologies may require additional technical modifications to be qualified as unconditional ESTs relative to NH3 emissions reductions.


Subject(s)
Agriculture , Air Pollutants, Occupational/analysis , Ammonia/analysis , Swine/physiology , Waste Disposal, Fluid/methods , Animals , North Carolina
14.
J Air Waste Manag Assoc ; 58(9): 1198-207, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18817112

ABSTRACT

A modeling study was conducted on dispersion and dry deposition of ammonia taking one hog farm as a unit. The ammonia emissions used in this study were measured under our OPEN (Odor, Pathogens, and Emissions of Nitrogen) project over a waste lagoon and from hog barns. Meteorological data were also collected at the farm site. The actual layout of barns and lagoons on the farms was used to simulate dry deposition downwind of the farm. Dry deposition velocity, dispersion, and dry deposition of ammonia were studied over different seasons and under different stability conditions using the short-range dispersion/air quality model, AERMOD. Dry deposition velocities were highest under near-neutral conditions and lowest under stable conditions. The highest deposition at short range occurred under nighttime stable conditions and the lowest occurred during daytime unstable conditions. Significant differences in deposition over crop and grass surfaces were observed under stable conditions.


Subject(s)
Agriculture , Air Pollutants, Occupational/analysis , Ammonia/analysis , Swine/physiology , Animals , Environmental Monitoring , Models, Statistical , North Carolina , Seasons , Weather
15.
J Air Waste Manag Assoc ; 58(9): 1208-14, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18817113

ABSTRACT

An analysis of fine particulate data in eastern North Carolina was conducted to investigate the impact of the hog industry and its emissions of ammonia into the atmosphere. The fine particulate data are simulated using ISORROPIA, an equilibrium thermodynamic model that simulates the gas and aerosol equilibrium of inorganic atmospheric species. The observational data analyses show that the major constituents of fine particulate matter (PM2.5) are organic carbon, elemental carbon, sulfate, nitrate, and ammonium. The observed PM2.5 concentration is positively correlated with temperature but anticorrelated with wind speed. The correlation between PM2.5 and wind direction at some locations suggests an impact of ammonia emissions from hog facilities on PM2.5 formation. The modeled results are in good agreement with observations, with slightly better agreement at urban sites than at rural sites. The predicted total inorganic particulate matter (PM) concentrations are within 5% of the observed values under conditions with median initial total PM species concentrations, median relative humidity (RH), and median temperature. Ambient conditions with high PM precursor concentrations, low temperature, and high RH appear to favor the formation of secondary PM.


Subject(s)
Air Pollutants/analysis , Particulate Matter/analysis , Ammonia/analysis , Models, Statistical , North Carolina , Weather , Wind
16.
J Air Waste Manag Assoc ; 58(9): 1215-22, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18817114

ABSTRACT

The southeastern portion of North Carolina features a dense crop and animal agricultural region; previous research suggests that this agricultural presence emits a significant portion of the state's nitrogen (i.e., oxides of nitrogen and ammonia) emissions. These findings indicate that transporting air over this region can affect nitrogen concentrations in precipitation at sites as far as 50 mi away. The study combined nitrate nitrogen isotope data with back-trajectory analysis to examine the relationship between regional nitrogen emission estimates independent of pollutant concentration information. In 2004, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to determine potential sources of nitrogen in rainwater collected at an urban receptor site in Raleigh, NC. The delta 15N isotope ratio signatures of each sample were used to further differentiate between sources of the rainwater nitrate. This study examined the importance of pollution sources, including animal agricultural activity, and meteorology on rainfall chemistry as well as the implications in fine particulate matter (PM2.5) formation. Samples that transited the dense crop and animal (swine) agricultural region of east-southeastern North Carolina (i.e., the source region) had lower delta 15N isotope ratios in the nitrate ion (average = -2.1 +/- 1.7 per thousand) than those from a counterpart nonagricultural region (average = 0.1 +/- 3 per thousand.) An increase in PM2.5 concentrations in the urban receptor site (yearly average = 15.1 +/- 5.8 microg/m3) was also found to correspond to air transport over the dense agricultural region relative to air that was not subjected to such transport (yearly average = 11.7 +/- 5.8 microg/m3).


Subject(s)
Nitrogen/analysis , Particulate Matter/analysis , Rain/chemistry , Analysis of Variance , Atmosphere , Isotopes/analysis , United States
17.
J Environ Qual ; 37(2): 515-20, 2008.
Article in English | MEDLINE | ID: mdl-18389937

ABSTRACT

Recent studies suggest that human activities accelerate the production of reactive nitrogen on a global scale. Increased nitrogen emissions may lead to environmental impacts including photochemical air pollution, reduced visibility, changes in biodiversity, and stratospheric ozone depletion. In the last 50 yr, emissions of ammonia (NH3), which is the most abundant form of reduced reactive nitrogen in the atmosphere, have significantly increased as a result of intensive agricultural management and greater livestock production in many developed countries. These agricultural production practices are increasingly subject to governmental regulations intended to protect air resources. It is therefore important that an accurate and robust agricultural emission factors database exist to provide valid scientific support of these regulations. This paper highlights some of the recent work that was presented at the 2006 Workshop on Agricultural Air Quality in Washington, D.C. regarding NH3 emissions estimates and emission factors from agricultural sources in the U.S. and Europe. In addition, several best management practices are explored as the scientific community attempts to maximize the beneficial use of reactive nitrogen while simultaneously minimizing negative environmental impacts.


Subject(s)
Air Pollutants/analysis , Ammonia/analysis , Animal Husbandry , Air Pollutants/chemistry , Air Pollution/prevention & control , Ammonia/chemistry , United States
18.
J Air Waste Manag Assoc ; 56(8): 1099-107, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16933642

ABSTRACT

This paper presents measurements of daily sampling of fine particulate matter (PM2.5) and its major chemical components at three urban and one rural locations in North Carolina during 2002. At both urban and rural sites, the major insoluble component of PM2.5 is organic matter, and the major soluble components are sulfate (SO4(2-)), ammonium (NH4(+)), and nitrate (NO3(-)). NH4(+) is neutralized mainly by SO4(2-) rather than by NO3(-), except in winter when SO4(2-) concentration is relatively low, whereas NO3(-) concentration is high. The equivalent ratio of NH4(+) to the sum of SO4(2-) and NO3(-) is < 1, suggesting that SO4(2-) and NO3(-) are not completely neutralized by NH4(+). At both rural and urban sites, SO4(2-) concentration displays a maximum in summer and a minimum in winter, whereas NO3(-) displays an opposite seasonal trend. Mass ratio of NO3(-) to SO4(2-) is consistently < 1 at all sites, suggesting that stationary source emissions may play an important role in PM2.5 formation in those areas. Organic carbon and elemental carbon are well correlated at three urban sites although they are poorly correlated at the agriculture site. Other than the daily samples, hourly samples were measured at one urban site. PM2.5 mass concentrations display a peak in early morning, and a second peak in late afternoon. Back trajectory analysis shows that air masses with lower PM2.5 mass content mainly originate from the marine environment or from a continental environment but with a strong subsidence from the upper troposphere. Air masses with high PM2.5 mass concentrations are largely from continental sources. Our study of fine particulate matter and its chemical composition in North Carolina provides crucial information that may be used to determine the efficacy of the new National Ambient Air Quality Standard (NAAQS) for PM fine. Moreover, the gas-to-particle conversion processes provide improved prediction of long-range transport of pollutants and air quality.


Subject(s)
Air Pollutants, Occupational/analysis , Carbon/analysis , Circadian Rhythm , Environmental Monitoring/instrumentation , Ions/analysis , Ions/chemistry , North Carolina
19.
J Air Waste Manag Assoc ; 54(6): 681-8, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15242148

ABSTRACT

An analysis of ozone (O3) concentrations and several other air quality-related variables was performed to elucidate their relationship with visibility at five urban and semi-urban locations in the southeast United States during the summer seasons of 1980-1996. The role and impact of O3 on aerosols was investigated to ascertain a relationship with visibility. Regional trend analysis over the 1980s reveals an increase in maximum O3 concentration coupled with a decrease in visibility. However, a similar analysis for the 1990s shows a leveling-off of both O3 and visibility; in both cases, the results were not statistically significant at the 5% level. A case study of site-specific trends at Nashville, TN, followed similar trends. To better understand the relationships between O3 concentration and visibility, the analysis was varied from yearly through daily to hourly averaged values. This increased temporal resolution showed a statistically significant inverse relationship between visibility and O3. Site-specific hourly r2 values ranged from 0.02 to 0.43. Additionally, by performing back-trajectory analysis, it was found that the visibility degraded by air mass migration over polluted areas.


Subject(s)
Air Pollution/analysis , Air/standards , Oxidants, Photochemical/analysis , Ozone/analysis , Southwestern United States
20.
J Air Waste Manag Assoc ; 54(5): 623-33, 2004 May.
Article in English | MEDLINE | ID: mdl-15149049

ABSTRACT

An annular denuder system, which consisted of a cyclone separator; two diffusion denuders coated with sodium carbonate and citric acid, respectively; and a filter pack consisting of Teflon and nylon filters in series, was used to measure acid gases, ammonia (NH3), and fine particles in the atmosphere from April 1998 to March 1999 in eastern North Carolina (i.e., an NH3-rich environment). The sodium carbonate denuders yielded average acid gas concentrations of 0.23 microg/m3 hydrochloric acid (standard deviation [SD] +/- 0.2 microg/m3); 1.14 microg/m3 nitric acid (SD +/- 0.81 microg/m3), and 1.61 microg/m3 sulfuric acid (SD +/- 1.58 microg/m3). The citric acid denuders yielded an average concentration of 17.89 microg/m3 NH3 (SD +/- 15.03 microg/m3). The filters yielded average fine aerosol concentrations of 1.64 microg/m3 ammonium (NH4+; SD +/- 1.26 microg/m3); 0.26 microg/m3 chloride (SD +/- 0.69 microg/m3), 1.92 microg/m3 nitrate (SD +/- 1.09 microg/m3), and 3.18 microg/m3 sulfate (SO4(2-); SD +/- 3.12 microg/m3). From seasonal variation, the measured particulates (NH4+, SO4(2-), and nitrate) showed larger peak concentrations during summer, suggesting that the gas-to-particle conversion was efficient during summer. The aerosol fraction in this study area indicated the domination of ammonium sulfate particles because of the local abundance of NH3, and the long-range transport of SO4(2-) based on back trajectory analysis. Relative humidity effects on gas-to-particle conversion processes were analyzed by particulate NH4+ concentration originally formed from the neutralization processes with the secondary pollutants in the atmosphere.


Subject(s)
Acids/analysis , Air Pollutants/analysis , Ammonia/analysis , Models, Theoretical , Agriculture , Climate , Environmental Monitoring , North Carolina , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...