Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Sci Sports Exerc ; 54(11): 1925-1935, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35787594

ABSTRACT

PURPOSE: We compared the effectiveness of three field-based training programs, namely military-based heat acclimatization (MHA), isothermic conditioning (IC) and interval training (IT), in inducing physiological adaptations in tropical natives. METHODS: Fifty-one untrained tropical native males (mean ± standard deviation: age, 25 ± 2 yr; body mass index, 23.6 ± 3.2 kg·m -2 ; body fat, 19% ± 5%; 2.4-km run time, 13.2 ± 0.9 min) donned the Full Battle Order attire (22 kg) and performed a treadmill route march heat stress test in an environmental chamber (dry bulb temperature, 29.9°C ± 0.5°C; relative humidity, 70% ± 3%). Heat stress tests were conducted before (PRE) and after (POST) a 2-wk training intervention consisting of either a MHA ( n = 17, 10 sessions of military-based heat acclimatization), IC ( n = 17, 10 sessions with target gastrointestinal temperature ( Tgi ) ≥ 38.5°C) or IT ( n = 17, six sessions of high-intensity interval training) program. Tgi , HR, mean weighted skin temperature ( Tsk ), physiological strain index (PSI) and thigh-predicted sweat sodium concentration ([Na + ]) were measured and analyzed by one-factor and two-factor mixed design ANOVA with a 0.05 level of significance. RESULTS: Field-based IC induced a greater thermal stimulus than MHA ( P = 0.029) and IT ( P < 0.001) during training. Reductions in mean exercise Tgi (-0.2°C [-0.3°C, 0.0°C]; P = 0.009) , PSI (-0.4 [-0.7, -0.1]; P = 0.015) and thigh-predicted sweat [Na + ] (-9 [-13, -5 mmol·L -1 ]; P < 0.001) were observed in IC but not MHA and IT (all P > 0.05). Resting HR (MHA, -4 bpm [-7, 0 bpm]; P = 0.025; IC, -7 bpm [-10, -4 bpm]; P < 0.001; IT, -4 bpm [-8, -1 bpm]; P = 0.008) and mean exercise HR (MHA, -4 [-8, 0 bpm]; P = 0.034; IC, -11 bpm [-15, -8 bpm]; P < 0.001, IT = -5 bpm [-9, -1 bpm]; P = 0.012) were lowered in all groups after training. Isothermic conditioning elicited a greater attenuation in mean exercise HR and thigh-predicted sweat [Na + ] relative to MHA (both P < 0.05). No between-group differences were observed when comparing MHA and IT (all P > 0.05). CONCLUSIONS: Isothermic conditioning induced a more complete heat-adapted phenotype relative to MHA and IT. Interval training may serve as a time efficient alternative to MHA.


Subject(s)
Heat Stress Disorders , Military Personnel , Acclimatization/physiology , Body Temperature/physiology , Body Temperature Regulation/physiology , Heart Rate/physiology , Hot Temperature , Humans , Male , Sodium
2.
Physiol Meas ; 37(4): 485-502, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26963194

ABSTRACT

Many longitudinal studies have collected serial body core temperature (T c) data to understand thermal work strain of workers under various environmental and operational heat stress environments. This provides the opportunity for the development of mathematical models to analyse and forecast temporal T c changes across populations of subjects. Such models can reduce the need for invasive methods that continuously measure T c. This current work sought to develop a nonlinear mixed effects modelling framework to delineate the dynamic changes of T c and its association with a set of covariates of interest (e.g. heart rate, chest skin temperature), and the structure of the variability of T c in various longitudinal studies. Data to train and evaluate the model were derived from two laboratory investigations involving male soldiers who participated in either a 12 (N = 18) or 15 km (N = 16) foot march with varied clothing, load and heat acclimatisation status. Model qualification was conducted using nonparametric bootstrap and cross validation procedures. For cross validation, the trajectory of a new subject's T c was simulated via Bayesian maximum a posteriori estimation when using only the baseline T c or using the baseline T c as well as measured T c at the end of every work (march) phase. The final model described T c versus time profiles using a parametric function with its main parameters modelled as a sigmoid hyperbolic function of the load and/or chest skin temperature. Overall, T c predictions corresponded well with the measured data (root mean square deviation: 0.16 °C), and compared favourably with those provided by two recently published Kalman filter models.


Subject(s)
Body Temperature , Healthy Volunteers , Nonlinear Dynamics , Humans , Longitudinal Studies , Male , Stochastic Processes , Time Factors , Young Adult
3.
J Int Soc Sports Nutr ; 11(1): 51, 2014.
Article in English | MEDLINE | ID: mdl-25379031

ABSTRACT

BACKGROUND: There is limited information on the effects of sports drinks on cognitive function after exercise in the heat. We aimed to investigate the effects of ingesting a commercially available carbohydrate-electrolyte (CHO) solution on cognitive performance following exercise-induced hyperthermia. METHODS: Twelve participants completed three practices of cognitive tests, one full familiarisation and two experimental trials in an environmental chamber (dry bulb temperature: 30.2 ± 0.3°C, relative humidity: 70 ± 3%). The experimental trials consisted of five cognitive tests (symbol digit matching, search and memory, digit span, choice reaction time and psychomotor vigilance test) performed before and after a 75-min run on a treadmill at 70% VO2 max. One ml/kg body mass of a 6.8% CHO solution or placebo was consumed at the start, every 15 min during exercise and between cognitive tests after exercise. Core temperature, heart rate, blood glucose concentrations, subjective ratings and cognitive performance were assessed (symbol digit matching, search and memory, digit span, choice reaction time and psychomotor vigilance). RESULTS: Participants were hyperthermic at the end of the run (placebo: 39.5 ± 0.4°C, CHO: 39.6 ± 0.5°C; Mean ± SD; p = 0.37). The change in blood glucose was higher with CHO ingestion (1.6, 0.7 to 4.5 mmol/L) (median, range) than with placebo ingestion (0.9, -0.1 to 4.7 mmol/L; p < 0.05). CHO ingestion reduced the maximum span of digits memorized, in contrast to an increase in maximum span with placebo ingestion (p < 0.05). CHO solution had no effect on other cognitive tests (p > 0.05). CONCLUSIONS: These results suggest that CHO solution ingestion may impair short-term memory following exertional heat stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...