Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 99(5)2021 May 01.
Article in English | MEDLINE | ID: mdl-33939812

ABSTRACT

Automatic feeding systems in pig production allow for the recording of individual feeding behavior traits, which might be influenced by the social interactions among individuals. This study fitted mixed models to estimate the direct and social effects on visit duration at the feeder of group-housed pigs. The dataset included 74,413 records of each visit duration time (min) event at the automatic feeder from 135 pigs housed in 14 pens. The sequence of visits at the feeder was employed as a proxy for the social interaction between individuals. To estimate animal effects, the direct effect was apportioned to the animal feeding (feeding pig), and the social effect was apportioned to the animal that entered the feeder immediately after the feeding pig left the feeding station (follower). The data were divided into two subsets: "non-immediate replacement" time (NIRT, N = 6,256), where the follower pig occupied the feeder at least 600 s after the feeding pig left the feeder, and "immediate replacement" time (IRT, N = 58,255), where the elapsed time between replacements was less than or equal to 60 s. The marginal posterior distribution of the parameters was obtained by Bayesian method. Using the IRT subset, the posterior mean of the proportion of variance explained by the direct effect (PrpσTemefos) was 18% for all models. The proportion of variance explained by the follower social effect (Prpσ^f2) was 2%, and the residual variance (σ^e2) decreased, suggesting an improved model fit by including the follower effect. Fitting the models with the NIRT subset, the estimate of PrpσTemefos was 20% but the Prpσ^f2 was almost zero and σ^e2 was identical for all models. For the IRT subset, the predicted best linear unbiased predictor (BLUP) of direct (Direct BLUP) and social (Follower BLUP) random effects on visit duration at the feeder of an animal was calculated. Feeder visit duration time was not correlated with traits, such as weight gain or average feed intake (P > 0.05), whereas for the daily feeder occupation time, the estimated correlation was positive with the Direct BLUP (r^ = 0.51, P < 0.05) and negative with the Follower BLUP (r^= -0.26, P < 0.05). The results suggest that the visit duration of an animal at the single-space feeder was influenced by both direct and social effects when the replacement time between visits was less than 1 min. Finally, animals that spent a longer time per day at the feeder seemed to do so by shortening the meal length of the preceding individual at the feeder.


Subject(s)
Eating , Feeding Behavior , Animal Feed/analysis , Animals , Bayes Theorem , Swine , Weight Gain
3.
J Anim Sci ; 97(9): 3658-3668, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31373628

ABSTRACT

Mixing of pigs into new social groups commonly induces aggressive interactions that result in skin lesions on the body of the animals. The relationship between skin lesions and aggressive behavioral interactions in group-housed pigs can be analyzed within the framework of social genetic effects (SGE). This study incorporates the quantification of aggressive interactions between pairs of animals in the modeling of SGE for skin lesions in different regions of the body in growing pigs. The dataset included 792 pigs housed in 59 pens. Skin lesions in the anterior, central, and caudal regions of the body were counted 24 h after pig mixing. Animals were video-recorded for 9 h postmixing and trained observers recorded the type and duration of aggressive interactions between pairs of animals. The number of seconds that pairs of pigs spent engaged in reciprocal fights and unilateral attack behaviors were used to parametrize the intensity of social interactions (ISI). Three types of models were fitted: direct genetic additive model (DGE), traditional social genetic effect model (TSGE) assuming uniform interactions between dyads, and an intensity-based social genetic effect model (ISGE) that used ISI to parameterize SGE. All models included fixed effects of sex, replicate, lesion scorer, weight at mixing, premixing lesion count, and the total time that the animal spent engaged in aggressive interactions (reciprocal fights and unilateral attack behaviors) as a covariate; a random effect of pen; and a random direct genetic effect. The ISGE models recovered more direct genetic variance than DGE and TSGE, and the estimated heritabilities (h^D2) were highest for all traits (P < 0.01) for the ISGE with ISI parametrized with unilateral attack behavior. The TSGE produced estimates that did not differ significantly from DGE (P > 0.5). Incorporating the ISI into ISGE, even in a small dataset, allowed separate estimation of the genetic parameters for direct and SGE, as well as the genetic correlation between direct and SGE (rs), which was positive for all lesion traits. The estimates from ISGE suggest that if behavioral observations are available, selection incorporating SGE may reduce the consequences of aggressive behaviors after mixing pigs.


Subject(s)
Animal Welfare , Behavior, Animal , Swine/physiology , Aggression , Animals , Female , Male , Models, Genetic , Phenotype , Skin/injuries , Swine/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...