Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Med Phys ; 48(1): 523-532, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33128259

ABSTRACT

PURPOSE: Task Group Report 195 of the American Association of Physicists in Medicine contains reference datasets for the direct comparison of results among different Monte Carlo (MC) simulation tools for various aspects of imaging research that employs ionizing radiation. While useful for comparing and validating MC codes, that effort did not provide the information needed to compare absolute dose estimates from CT exams. Therefore, the purpose of this work is to extend those efforts by providing a reference dataset for benchmarking fetal dose derived from MC simulations of clinical CT exams. ACQUISITION AND VALIDATION METHODS: The reference dataset contains the four necessary elements for validating MC engines for CT dosimetry: (a) physical characteristics of the CT scanner, (b) patient information, (c) exam specifications, and (d) fetal dose results from previously validated and published MC simulations methods in tabular form. Scanner characteristics include non-proprietary descriptions of equivalent source cumulative distribution function (CDF) spectra and bowtie filtration profiles, as well as scanner geometry information. Additionally, for the MCNPX MC engine, normalization factors are provided to convert raw simulation results to absolute dose in mGy. The patient information is based on a set of publicly available fetal dose models and includes de-identified image data; voxelized MC input files with fetus, uterus, and gestational sac identified; and patient size metrics in the form of water equivalent diameter (Dw ) z-axis distributions from a simulated topogram (Dw,topo ) and from the image data (Dw,image ). Exam characteristics include CT scan start and stop angles and table and patient locations, helical pitch, nominal collimation and measured beam width, and gantry rotation time for each simulation. For simulations involving estimating doses from exams using tube current modulation (TCM), a realistic TCM scheme is presented that is estimated based upon a validated method. (d) Absolute and CTDIvol -normalized fetal dose results for both TCM and FTC simulations are given for each patient model under each scan scenario. DATA FORMAT AND USAGE NOTES: Equivalent source CDFs and bowtie filtration profiles are available in text files. Image data are available in DICOM format. Voxelized models are represented by a header followed by a list of integers in a text file representing a three-dimensional model of the patient. Size distribution metrics are also given in text files. Results of absolute and normalized fetal dose with associated MC error estimates are presented in tabular form in an Excel spreadsheet. All data are stored on Zenodo and are publicly accessible using the following link: https://zenodo.org/record/3959512. POTENTIAL APPLICATIONS: Similar to the work of AAPM Report 195, this work provides a set of reference data for benchmarking fetal dose estimates from clinical CT exams. This provides researchers with an opportunity to compare MC simulation results to a set of published reference data as part of their efforts to validate absolute and normalized fetal dose estimates. This could also be used as a basis for comparison to other non-MC approaches, such as deterministic approaches, or to commercial packages that provide estimates of fetal doses from clinical CT exams.


Subject(s)
Benchmarking , Tomography, X-Ray Computed , Female , Fetus , Humans , Monte Carlo Method , Phantoms, Imaging , Radiation Dosage
2.
Med Phys ; 47(9): 3996-4004, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32562286

ABSTRACT

PURPOSE: Coronary computed tomography angiography (CTA) has one of the highest diagnostic sensitivities for detection of the significance of coronary artery disease (CAD); however, sensitivity is moderate and may result in increased catheterization rates. We performed an efficacy study to determine whether a trained machine learning algorithm that uses coronary CTA data may improve CAD diagnosis accuracy. METHODS: Sixty-four-patient image datasets based on coronary CTA were retrospectively collected to generate eight views considering 45° increments around the coronary artery centerline. The dataset was randomly split into training and testing cohorts. Invasive FFR measurements were used as ground truth labels. A convolutional neural network (CNN) was trained and the model's capacity to predict severity of CAD was assessed on the testing cohort. Classification accuracy and area under the receiver operating characteristic curve (AUROC) analysis were performed. Similar CAD severity classification accuracy and AUROC analyses were performed using only percent diameter stenosis (%DS) and CT-derived FFR performed by 13 operators with various levels of expertise. RESULTS: Classification accuracy over the test cohort was 80.9% using the trained network and 72.4% using the user-operated CT-derived FFR software. AUROC over the test cohort was 0.862 using the trained network, 0.807 using %DS, and 0.758 using the human-operated CT-derived FFR software. CONCLUSIONS: A trained neural network compared noninferiorly in-terms of classification accuracy and AUROC with human operators of a CT-derived FFR software, and in-terms of AUROC with clinical decision-making using %DS.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease/diagnostic imaging , Coronary Stenosis/diagnostic imaging , Humans , Neural Networks, Computer , Predictive Value of Tests , Retrospective Studies , Severity of Illness Index , Tomography, X-Ray Computed
3.
AJR Am J Roentgenol ; 214(3): 566-573, 2020 03.
Article in English | MEDLINE | ID: mdl-31967501

ABSTRACT

OBJECTIVE. The objective of this study was to compare image quality and clinically significant lesion detection on deep learning reconstruction (DLR) and iterative reconstruction (IR) images of submillisievert chest and abdominopelvic CT. MATERIALS AND METHODS. Our prospective multiinstitutional study included 59 adult patients (33 women, 26 men; mean age ± SD, 65 ± 12 years old; mean body mass index [weight in kilograms divided by the square of height in meters] = 27 ± 5) who underwent routine chest (n = 22; 16 women, six men) and abdominopelvic (n = 37; 17 women, 20 men) CT on a 640-MDCT scanner (Aquilion ONE, Canon Medical Systems). All patients gave written informed consent for the acquisition of low-dose (LD) CT (LDCT) after a clinically indicated standard-dose (SD) CT (SDCT). The SDCT series (120 kVp, 164-644 mA) were reconstructed with interactive reconstruction (IR) (adaptive iterative dose reduction [AIDR] 3D, Canon Medical Systems), and the LDCT (100 kVp, 120 kVp; 30-50 mA) were reconstructed with filtered back-projection (FBP), IR (AIDR 3D and forward-projected model-based iterative reconstruction solution [FIRST], Canon Medical Systems), and deep learning reconstruction (DLR) (Advanced Intelligent Clear-IQ Engine [AiCE], Canon Medical Systems). Four subspecialty-trained radiologists first read all LD image sets and then compared them side-by-side with SD AIDR 3D images in an independent, randomized, and blinded fashion. Subspecialty radiologists assessed image quality of LDCT images on a 3-point scale (1 = unacceptable, 2 = suboptimal, 3 = optimal). Descriptive statistics were obtained, and the Wilcoxon sign rank test was performed. RESULTS. Mean volume CT dose index and dose-length product for LDCT (2.1 ± 0.8 mGy, 49 ± 13mGy·cm) were lower than those for SDCT (13 ± 4.4 mGy, 567 ± 249 mGy·cm) (p < 0.0001). All 31 clinically significant abdominal lesions were seen on SD AIDR 3D and LD DLR images. Twenty-five, 18, and seven lesions were detected on LD AIDR 3D, LD FIRST, and LD FBP images, respectively. All 39 pulmonary nodules detected on SD AIDR 3D images were also noted on LD DLR images. LD DLR images were deemed acceptable for interpretation in 97% (35/37) of abdominal and 95-100% (21-22/22) of chest LDCT studies (p = 0.2-0.99). The LD FIRST, LD AIDR 3D, and LD FBP images had inferior image quality compared with SD AIDR 3D images (p < 0.0001). CONCLUSION. At submillisievert chest and abdominopelvic CT doses, DLR enables image quality and lesion detection superior to commercial IR and FBP images.


Subject(s)
Deep Learning , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Aged , Contrast Media , Female , Humans , Imaging, Three-Dimensional , Male , Middle Aged , Prospective Studies , Radiation Dosage , Radiography, Abdominal , Radiography, Thoracic
4.
Biomed Phys Eng Express ; 6(4): 045007, 2020 05 14.
Article in English | MEDLINE | ID: mdl-33444268

ABSTRACT

BACKGROUND: 3D printed patient-specific coronary models have the ability to enable repeatable benchtop experiments under controlled blood flow conditions. This approach can be applied to CT-derived patient geometries to emulate coronary flow and related parameters such as Fractional Flow Reserve (FFR). METHODS: This study uses 3D printing to compare such benchtop FFR results with a non-invasive CT-FFR research software algorithm and catheter based invasive FFR (I-FFR) measurements. Fifty-two patients with a clinical indication for I-FFR underwent a research Coronary CT Angiography (CCTA) prior to catheterization. CT images were used to measure CT-FFR and to generate patient-specific 3D printed models of the aortic root and three main coronary arteries. Each patient-specific model was connected to a programmable pulsatile pump and benchtop FFR (B-FFR) was derived from pressures measured proximal and distal to coronary stenosis using pressure transducers. B-FFR was measured for two coronary outflow rates ('normal', 250 ml min-1; and 'hyperemic', 500 ml min-1) by adjusting the model's distal coronary resistance. RESULTS: Pearson correlations and ROC AUC were calculated using invasive I-FFR as reference. The Pearson correlation factor of CT-FFR and B-FFR-500 was 0.75 and 0.71, respectively. Areas under the ROCs for CT-FFR and B-FFR-500 were 0.80 (95%CI: 0.70-0.87) and 0.81 (95%CI: 0.64-0.91) respectively. CONCLUSION: Benchtop flow simulations with 3D printed models provide the capability to measure pressure changes at any location in the model, for ultimately emulating the FFR at several simulated physiological blood flow conditions. CLINICAL TRIAL REGISTRATION: https://clinicaltrials.gov/show/NCT03149042.


Subject(s)
Coronary Artery Disease/diagnostic imaging , Imaging, Three-Dimensional/methods , Tomography, X-Ray Computed/methods , Aged , Algorithms , Cardiac Catheterization , Computed Tomography Angiography/methods , Coronary Angiography/methods , Coronary Stenosis/physiopathology , Coronary Vessels/physiopathology , Female , Fractional Flow Reserve, Myocardial/physiology , Hemodynamics , Humans , Male , Middle Aged , Multidetector Computed Tomography , Prospective Studies , ROC Curve , Software
5.
Eur J Radiol Open ; 6: 225-230, 2019.
Article in English | MEDLINE | ID: mdl-31304196

ABSTRACT

OBJECTIVE: We assessed the effect of the forward projected model-based reconstruction technique (FIRST) on lesion detection of routine abdomen CT at <1 mSv. MATERIALS AND METHODS: Thirty-seven adult patients gave written informed consent for acquisition of low-dose CT (LDCT) immediately after their clinically-indicated, standard of care dose (SDCT), routine abdomen CT on a 640-slice MDCT (Aquillion One, Canon Medical System). The LDCT series were reconstructed with FIRST (at STD (Standard) and STR (Strong) levels), and SDCT series with filtered back projection (FBP). Two radiologists assessed lesions in LD-FBP and FIRST images followed by SDCT images. Then, SDCT and LDCT were compared for presence of artifacts in a randomized and blinded fashion. Patient demographics, size and radiation dose descriptors (CTDIvol, DLP) were recorded. Descriptive statistics and inter-observer variability were calculated for data analysis. RESULTS: Mean CTDIvol for SDCT and LDCT were 13 ± 4.7 mGy and 2.2 ± 0.8 mGy, respectively. There were 46 true positive lesions detected on SDCT. Radiologists detected 38/46 lesions on LD-FIRST-STD compared to 26/46 lesions on LD-FIRST-STR. The eight lesions (liver and kidney cysts, pancreatic lesions, sub-cm peritoneal lymph node) missed on LD-FIRST-STD were seen in patients with BMI > 25.8 kg/m2. Diagnostic confidence for lesion assessment was optimal in LD-FIRST-STD setting in most patients regardless of their size. The inter-observer agreement (kappa-value) for overall image quality were 0.98 and 0.84 for LD-FIRST-STD and STR levels, respectively. CONCLUSION: FIRST enabled optimal lesion detection in routine abdomen CT at less than 1 mSv radiation dose in patients with body mass less than ≤25.8 kg/m2.

6.
Med Phys ; 46(6): 2729-2743, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30893477

ABSTRACT

PURPOSE: The purpose of this work was to estimate scanner-independent CTDIvol -to-fetal-dose coefficients for tube current-modulated (TCM) and fixed tube current (FTC) computed tomography (CT) examinations of pregnant patients of various gestational ages undergoing abdominal/pelvic CT examinations. METHODS: For 24 pregnant patients of gestational age from <5 to 36 weeks who underwent clinically indicated CT examinations, voxelized models of maternal and fetal (or embryo) anatomy were created from abdominal/pelvic image data. Absolute fetal dose (Dfetus ) was estimated using Monte Carlo (MC) simulations of helical scans covering the abdomen and pelvis for TCM and FTC scans. Estimated TCM schemes were generated for each patient model using a validated method that accounts for patient attenuation and scanner output limits for one scanner model and were incorporated into MC simulations. FTC scans were also simulated for each patient model with multidetector row CT scanners from four manufacturers. Normalized fetal dose estimates, nDfetus , was obtained by dividing Dfetus from the MC simulations by CTDIvol . Patient size was described using water equivalent diameter (Dw ) measured at the three-dimensional geometric centroid of the fetus. Fetal depth (DEf ) was measured from the anterior skin surface to the anterior part of the fetus. nDfetus and Dw were correlated using an exponential model to develop equations for fetal dose conversion coefficients for TCM and FTC abdominal/pelvic CT examinations. Additionally, bivariate linear regression was performed to analyze the correlation of nDfetus with Dw and fetal depth (DEf ). For one scanner model, nDfetus from TCM was compared to FTC and the size-specific dose estimate (SSDE) conversion coefficients (f-factors) from American Association of Physicists in Medicine (AAPM) Report 204. nDfetus from FTC simulations was averaged across all scanners for each patient ( n D fetus ¯ ) . n D fetus ¯ was then compared with SSDE f-factors and correlated with Dw using an exponential model and with Dw and DEf using a bivariate linear model. RESULTS: For TCM, the coefficient of determination (R2 ) of nDfetus and Dw was observed to be 0.73 using an exponential model. Using the bivariate linear model with Dw and DEf , an R2 of 0.78 was observed. For the TCM technology modeled, TCM yielded nDfetus values that were on average 6% and 17% higher relative to FTC and SSDE f-factors, respectively. For FTC, the R2 of n D fetus ¯ with respect to Dw was observed to be 0.64 using an exponential model. Using the bivariate linear model, an R2 of 0.75 was observed for n D fetus ¯ with respect to Dw and DEf . A mean difference of 0.4% was observed between n D fetus ¯ and SSDE f-factors. CONCLUSION: Good correlations were observed for nDfetus from TCM and FTC scans using either an exponential model with Dw or a bivariate linear model with both Dw and DEf . These results indicate that fetal dose from abdomen/pelvis CT examinations of pregnant patients of various gestational ages may be reasonably estimated with models that include (a) scanner-reported CTDIvol and (b) Dw as a patient size metric, in addition to (c) DEf if available. These results also suggest that SSDE f-factors may provide a reasonable (within ±25%) estimate of nDfetus for TCM and FTC abdomen/pelvis CT exams.


Subject(s)
Abdomen/diagnostic imaging , Fetus/radiation effects , Pelvis/diagnostic imaging , Radiation Dosage , Tomography, X-Ray Computed/adverse effects , Electric Conductivity , Female , Humans , Monte Carlo Method , Pregnancy , Radiometry
7.
J Med Imaging (Bellingham) ; 6(2): 021603, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30891468

ABSTRACT

We developed three-dimensionally (3D) printed patient-specific coronary phantoms that are capable of sustaining physiological flow and pressure conditions. We assessed the accuracy of these phantoms from coronary CT acquisition, benchtop experimentation, and CT-FFR software. Five patients with coronary artery disease underwent 320-detector row coronary CT angiography (CCTA) (Aquilion ONE, Canon Medical Systems) and a catheter lab procedure to measure fractional flow reserve (FFR). The aortic root and three main coronary arteries were segmented (Vitrea, Vital Images) and 3D printed (Eden 260V, Stratasys). Phantoms were connected into a pulsatile flow loop, which replicated physiological flow and pressure gradients. Contrast was introduced and the phantoms were scanned using the same CT scanner model and CCTA protocol as used for the patients. Image data from the phantoms were input to a CT-FFR research software (Canon Medical Systems) and compared to those derived from the clinical data, along with comparisons between image measurements and benchtop FFR results. Phantom diameter measurements were within 1 mm on average compared to patient measurements. Patient and phantom CT-FFR results had an absolute mean difference of 4.34% and Pearson correlation of 0.95. We have demonstrated the capabilities of 3D printed patient-specific phantoms in a diagnostic software.

8.
Radiol Cardiothorac Imaging ; 1(3): e180012, 2019 Aug.
Article in English | MEDLINE | ID: mdl-33778507

ABSTRACT

PURPOSE: To measure the inter- and intraobserver variability among operators of varying expertise in conducting CT-derived fractional flow reserve (CT FFR) measurements on-site by using structural and fluid analysis and to evaluate differences in reproducibility between two different training methods for end users. MATERIALS AND METHODS: This retrospective analysis of the prospectively enrolled cohort included 22 symptomatic patients who underwent both 320-detector row coronary CT angiography and catheter-derived fractional flow reserve (FFR) within 90 days. Thirteen operators of varying expertise were assigned to one of two training arms: arm 1, on-site training by a specialist in CT FFR technology; arm 2, self-training through use of written materials. After the training, all 13 operators reviewed the CT data and measured CT FFR in 24 vessels in 22 patients. Inter- and intraoperator variability and agreements between CT FFR and catheter-derived FFR measurements were evaluated. RESULTS: The overall intraclass correlation coefficient (ICC) among operators was 0.71 (95% confidence interval: 0.58, 0.83) with a mean absolute difference (± standard deviation) of 0.027 ± 0.022. The operators in arm 2 showed greater interoperator differences than those in arm 1 (0.031 ± 0.024 vs 0.023 ± 0.018; P = .024). Among operators who recalculated CT FFR, the mean CT FFR value did not significantly differ between the first and second calculations (ICC, 0.66; 95% confidence interval: 0.46, 0.87), with the medical specialists producing the lowest intraoperator variability (0.053 ± 0.060). The overall correlation coefficient between CT FFR and catheter FFR was r = 0.61, with a mean absolute difference of 0.096 ± 0.089. CONCLUSION: Good reproducibility of CT FFR values calculated on-site on the basis of structural and fluid analysis was observed among operators of varying expertise. Face-to-face training sessions may cause less variability.© RSNA, 2019Supplemental material is available for this article.

9.
Article in English | MEDLINE | ID: mdl-29899591

ABSTRACT

PURPOSE: 3D printed patient specific vascular models provide the ability to perform precise and repeatable benchtop experiments with simulated physiological blood flow conditions. This approach can be applied to CT-derived patient geometries to determine coronary flow related parameters such as Fractional Flow Reserve (FFR). To demonstrate the utility of this approach we compared bench-top results with non-invasive CT-derived FFR software based on a computational fluid dynamics algorithm and catheter based FFR measurements. MATERIALS AND METHODS: Twelve patients for whom catheter angiography was clinically indicated signed written informed consent to CT Angiography (CTA) before their standard care that included coronary angiography (ICA) and conventional FFR (Angio-FFR). The research CTA was used first to determine CT-derived FFR (Vital Images) and second to generate patient specific 3D printed models of the aortic root and three main coronary arteries that were connected to a programmable pulsatile pump. Benchtop FFR was derived from pressures measured proximal and distal to coronary stenosis using pressure transducers. RESULTS: All 12 patients completed the clinical study without any complication, and the three FFR techniques (Angio-FFR, CT-FFR, and Benchtop FFR) are reported for one or two main coronary arteries. The Pearson correlation among Benchtop FFR/Angio-FFR, CT-FFR/ Benchtop FFR, and CT-FFR/ Angio-FFR are 0.871, 0.877, and 0.927 respectively. CONCLUSIONS: 3D printed patient specific cardiovascular models successfully simulated hyperemic blood flow conditions, matching invasive Angio-FFR measurements. This benchtop flow system could be used to validate CT-derived FFR diagnostic software, alleviating both cost and risk during invasive procedures.

10.
Proc SPIE Int Soc Opt Eng ; 101382017 Feb 11.
Article in English | MEDLINE | ID: mdl-28663663

ABSTRACT

3D printing has been used to create complex arterial phantoms to advance device testing and physiological condition evaluation. Stereolithographic (STL) files of patient-specific cardiovascular anatomy are acquired to build cardiac vasculature through advanced mesh-manipulation techniques. Management of distal branches in the arterial tree is important to make such phantoms practicable. We investigated methods to manage the distal arterial flow resistance and pressure thus creating physiologically and geometrically accurate phantoms that can be used for simulations of image-guided interventional procedures with new devices. Patient specific CT data were imported into a Vital Imaging workstation, segmented, and exported as STL files. Using a mesh-manipulation program (Meshmixer) we created flow models of the coronary tree. Distal arteries were connected to a compliance chamber. The phantom was then printed using a Stratasys Connex3 multimaterial printer: the vessel in TangoPlus and the fluid flow simulation chamber in Vero. The model was connected to a programmable pump and pressure sensors measured flow characteristics through the phantoms. Physiological flow simulations for patient-specific vasculature were done for six cardiac models (three different vasculatures comparing two new designs). For the coronary phantom we obtained physiologically relevant waves which oscillated between 80 and 120 mmHg and a flow rate of ~125 ml/min, within the literature reported values. The pressure wave was similar with those acquired in human patients. Thus we demonstrated that 3D printed phantoms can be used not only to reproduce the correct patient anatomy for device testing in image-guided interventions, but also for physiological simulations. This has great potential to advance treatment assessment and diagnosis.

11.
Proc SPIE Int Soc Opt Eng ; 101382017 Feb 11.
Article in English | MEDLINE | ID: mdl-28649159

ABSTRACT

PURPOSE: Accurate patient-specific phantoms for device testing or endovascular treatment planning can be 3D printed. We expand the applicability of this approach for cardiovascular disease, in particular, for CT-geometry derived benchtop measurements of Fractional Flow Reserve, the reference standard for determination of significant individual coronary artery atherosclerotic lesions. MATERIALS AND METHODS: Coronary CT Angiography (CTA) images during a single heartbeat were acquired with a 320×0.5mm detector row scanner (Toshiba Aquilion ONE). These coronary CTA images were used to create 4 patient-specific cardiovascular models with various grades of stenosis: severe, <75% (n=1); moderate, 50-70% (n=1); and mild, <50% (n=2). DICOM volumetric images were segmented using a 3D workstation (Vitrea, Vital Images); the output was used to generate STL files (using AutoDesk Meshmixer), and further processed to create 3D printable geometries for flow experiments. Multi-material printed models (Stratasys Connex3) were connected to a programmable pulsatile pump, and the pressure was measured proximal and distal to the stenosis using pressure transducers. Compliance chambers were used before and after the model to modulate the pressure wave. A flow sensor was used to ensure flow rates within physiological reported values. RESULTS: 3D model based FFR measurements correlated well with stenosis severity. FFR measurements for each stenosis grade were: 0.8 severe, 0.7 moderate and 0.88 mild. CONCLUSIONS: 3D printed models of patient-specific coronary arteries allows for accurate benchtop diagnosis of FFR. This approach can be used as a future diagnostic tool or for testing CT image-based FFR methods.

12.
Acad Radiol ; 20(9): 1152-61, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23931430

ABSTRACT

RATIONALE AND OBJECTIVES: Efforts to decrease radiation exposure during pediatric high-resolution thoracic computed tomography (HRCT), while maintaining diagnostic image quality, are imperative. The objective of this investigation was to compare organ doses and scan performance for pediatric HRCT using volume, helical, and noncontiguous axial acquisitions. MATERIALS AND METHODS: Thoracic organ doses were measured using 20 metal oxide semiconductor field-effect transistor dosimeters. Mean and median organ doses and scan durations were determined and compared for three acquisition modes in a 5-year-old anthropomorphic phantom using similar clinical pediatric scan parameters. Image noise was measured and compared in identical regions within the thorax. RESULTS: There was a significantly lower dose in lung (1.8 vs 2.7 mGy, P < .02) and thymus (2.3 vs 2.7 mGy, P < .02) between volume and noncontiguous axial modes and in lung (1.8 vs 2.3 mGy, P < .02), breast (1.8 vs 2.6 mGy, P < .02), and thymus (2.3 vs 2.4 mGy, P < .02) between volume and helical modes. There was a significantly lower median image noise for volume compared to helical and axial modes in lung (55.6 vs 79.3 and 70.7) and soft tissue (76.0 vs 111.3 and 89.9). Scan times for volume, helical, and noncontiguous axial acquisitions were 0.35, 3.9, and 24.5 seconds, respectively. CONCLUSION: Volumetric HRCT provides an opportunity for thoracic organ dose and image noise reduction, at significantly faster scanning speeds, which may benefit pediatric patients undergoing surveillance studies for diffuse lung disease.


Subject(s)
Radiation Dosage , Radiation Protection/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Radiography, Thoracic/methods , Tomography, X-Ray Computed/methods , Whole-Body Counting , Child, Preschool , Humans , Phantoms, Imaging , Radiographic Image Enhancement/methods , Radiography, Thoracic/instrumentation , Reproducibility of Results , Sensitivity and Specificity , Tomography, X-Ray Computed/instrumentation
13.
Pediatr Radiol ; 43(9): 1117-27, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23636537

ABSTRACT

BACKGROUND: Advanced multidetector CT systems facilitate volumetric image acquisition, which offers theoretic dose savings over helical acquisition with shorter scan times. OBJECTIVE: Compare effective dose (ED), scan duration and image noise using 320- and 64-detector CT scanners in various acquisition modes for clinical chest, abdomen and pelvis protocols. MATERIALS AND METHODS: ED and scan durations were determined for 64-detector helical, 160-detector helical and volume modes under chest, abdomen and pelvis protocols on 320-detector CT with adaptive collimation and 64-detector helical mode on 64-detector CT without adaptive collimation in a phantom representing a 5-year-old child. Noise was measured as standard deviation of Hounsfield units. RESULTS: Compared to 64-detector helical CT, all acquisition modes on 320-detector CT resulted in lower ED and scan durations. Dose savings were greater for chest (27-46%) than abdomen/pelvis (18-28%) and chest/abdomen/pelvis imaging (8-14%). Noise was similar across scanning modes, although some protocols on 320-detector CT produced slightly higher noise. CONCLUSION: Dose savings can be achieved for chest, abdomen/pelvis and chest/abdomen/pelvis examinations on 320-detector CT compared to helical acquisition on 64-detector CT, with shorter scan durations. Although noise differences between some modes reached statistical significance, this is of doubtful diagnostic significance and will be studied further in a clinical setting.


Subject(s)
Artifacts , Imaging, Three-Dimensional/instrumentation , Phantoms, Imaging , Radiation Dosage , Radiometry , Tomography, Spiral Computed/instrumentation , Whole Body Imaging/instrumentation , Child , Equipment Design , Equipment Failure Analysis , Humans , Reproducibility of Results , Sensitivity and Specificity , Time Factors
14.
AJR Am J Roentgenol ; 199(5): 1129-35, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23096189

ABSTRACT

OBJECTIVE: The purpose of this study is to determine patient dose estimates for clinical pediatric cardiac-gated CT angiography (CTA) protocols on a 320-MDCT volume scanner. MATERIALS AND METHODS: Organ doses were measured using 20 metal oxide semiconductor field effect transistor (MOSFET) dosimeters. Radiation dose was estimated for volumetrically acquired clinical pediatric prospectively and retrospectively ECG-gated cardiac CTA protocols in 5-year-old and 1-year-old anthropomorphic phantoms on a 320-MDCT scanner. Simulated heart rates of 60 beats/min (5-year-old phantom) and 120 beats/min (1- and 5-year-old phantoms) were used. Effective doses (EDs) were calculated using average measured organ doses and International Commission on Radiological Protection 103 tissue-weighting factors. Dose-length product (DLP) was recorded for each examination and was used to develop dose conversion factors for pediatric cardiac examinations acquired with volume scan mode. DLP was also used to estimate ED according to recently published dose conversion factors for pediatric helical chest examinations. Repeated measures and paired Student t test analyses were performed. RESULTS: For the 5-year-old phantom, at 60 beats/min, EDs ranged from 1.2 mSv for a prospectively gated examination to 4.5 mSv for a retrospectively gated examination. For the 5-year-old phantom, at 120 beats/min, EDs ranged from 3.0 mSv for a prospectively gated examination to 4.9 mSv for a retrospectively gated examination. For the 1-year-old phantom, at 120 beats/min, EDs ranged from 2.7 mSv for a prospectively gated examination to 4.5 mSv for a retrospectively gated examination. CONCLUSION: EDs for 320-MDCT volumetrically acquired ECG-gated pediatric cardiac CTA are lower than those published for conventional 16- and 64-MDCT scanners.


Subject(s)
Cardiac-Gated Imaging Techniques , Coronary Angiography/methods , Phantoms, Imaging , Radiation Dosage , Tomography, X-Ray Computed/methods , Body Burden , Calibration , Child, Preschool , Humans , Infant , Prospective Studies , Retrospective Studies
15.
J Cardiovasc Comput Tomogr ; 5(4): 231-9, 2011.
Article in English | MEDLINE | ID: mdl-21723514

ABSTRACT

BACKGROUND: The relationship between chest lateral width, tube current, image noise, and radiation exposure on 320-detector row CT has not been reported. OBJECTIVE: We investigated the relationships between chest lateral width, estimated radiation exposure (DLPe), and image noise in 300 patients undergoing clinical coronary calcium scanning. METHODS: Patients undergoing coronary calcium scanning with 320-detector row CT (prospective, volumetric mode, 120 kV of tube voltage, 100-550 mA of tube current, 0.5-mm detector width) were grouped by chest lateral width (small, medium, and large) from anteroposterior topograms and 100 consecutive patients were selected from each group (n = 300). Tube current, DLPe, and noise were compared among groups with Kruskal-Wallis or one-way ANOVA. Phantom experiments were performed to evaluate the accuracy of calcium quantification as a function of size and tube current. RESULTS: Median tube current in small, medium, and large patients was 130, 200, and 250 mA, respectively (P < 0.0001). Despite the use of higher tube current settings, noise levels also increased with size (20.2 ± 4.5 HU, 22.0 ± 3.9 HU, and 25.1 ± 4.9 HU, respectively; global P < 0.001). DLPe was significantly higher with increasing size (54, 83, and 104 mGy · cm, respectively; P < 0.0001). Phantom experiments showed that 50-100 mA, 150-200 mA, and approximately 300 mA in small, medium, and large phantoms were associated with stable estimate of calcium. CONCLUSIONS: Increasing chest lateral width is associated with increasing radiation exposure and image noise. The use of 50-100 mA in small and 150-200 mA in medium patients is associated with acceptable noise and stable estimate of coronary artery calcium. In large patients, precise identification of individual calcified lesions remains difficult despite increasing tube current and radiation exposure.


Subject(s)
Anthropometry , Calcinosis/diagnostic imaging , Coronary Angiography/instrumentation , Coronary Artery Disease/diagnostic imaging , Radiation Dosage , Thorax/anatomy & histology , Tomography, X-Ray Computed/instrumentation , Aged , Algorithms , Analysis of Variance , Artifacts , Chi-Square Distribution , Equipment Design , Female , Georgia , Humans , Male , Middle Aged , Phantoms, Imaging , Predictive Value of Tests , Radiographic Image Interpretation, Computer-Assisted , Retrospective Studies , Severity of Illness Index
16.
Med Phys ; 37(4): 1816-25, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20443504

ABSTRACT

PURPOSE: Monte Carlo radiation transport techniques have made it possible to accurately estimate the radiation dose to radiosensitive organs in patient models from scans performed with modern multidetector row computed tomography (MDCT) scanners. However, there is considerable variation in organ doses across scanners, even when similar acquisition conditions are used. The purpose of this study was to investigate the feasibility of a technique to estimate organ doses that would be scanner independent. This was accomplished by assessing the ability of CTDIvol measurements to account for differences in MDCT scanners that lead to organ dose differences. METHODS: Monte Carlo simulations of 64-slice MDCT scanners from each of the four major manufacturers were performed. An adult female patient model from the GSF family of voxelized phantoms was used in which all ICRP Publication 103 radiosensitive organs were identified. A 120 kVp, full-body helical scan with a pitch of 1 was simulated for each scanner using similar scan protocols across scanners. From each simulated scan, the radiation dose to each organ was obtained on a per mA s basis (mGy/mA s). In addition, CTDIvol values were obtained from each scanner for the selected scan parameters. Then, to demonstrate the feasibility of generating organ dose estimates from scanner-independent coefficients, the simulated organ dose values resulting from each scanner were normalized by the CTDIvol value for those acquisition conditions. RESULTS: CTDIvol values across scanners showed considerable variation as the coefficient of variation (CoV) across scanners was 34.1%. The simulated patient scans also demonstrated considerable differences in organ dose values, which varied by up to a factor of approximately 2 between some of the scanners. The CoV across scanners for the simulated organ doses ranged from 26.7% (for the adrenals) to 37.7% (for the thyroid), with a mean CoV of 31.5% across all organs. However, when organ doses are normalized by CTDIvoI values, the differences across scanners become very small. For the CTDIvol, normalized dose values the CoVs across scanners for different organs ranged from a minimum of 2.4% (for skin tissue) to a maximum of 8.5% (for the adrenals) with a mean of 5.2%. CONCLUSIONS: This work has revealed that there is considerable variation among modern MDCT scanners in both CTDIvol and organ dose values. Because these variations are similar, CTDIvol can be used as a normalization factor with excellent results. This demonstrates the feasibility of establishing scanner-independent organ dose estimates by using CTDIvol to account for the differences between scanners.


Subject(s)
Tomography Scanners, X-Ray Computed , Tomography, X-Ray Computed/instrumentation , Bone Marrow/pathology , Bone and Bones/pathology , Computer Simulation , Equipment Design , Humans , Models, Theoretical , Monte Carlo Method , Phantoms, Imaging , Radiation Dosage , Software , Tissue Distribution , Tomography, X-Ray Computed/methods
17.
Acad Radiol ; 17(3): 316-22, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20004119

ABSTRACT

RATIONALE AND OBJECTIVES: Lung and lobar volume measurements from computed tomographic (CT) imaging are being used in clinical trials to assess new minimally invasive emphysema treatments aiming to reduce lung volumes. Establishing the reproducibility of lung volume measurements is important if they are to be accepted as treatment planning and outcome variables. The aims of this study were to (1) investigate the correlation between lung volumes assessed on CT imaging and on pulmonary function testing (PFT), (2) compare the two methods' reproducibility, and (3) assess the reproducibility of CT lobar volumes. MATERIALS AND METHODS: CT imaging and body plethysmography were performed at baseline and after a 9-month interval in multicenter emphysema treatment trials. Lung volumes were measured at total lung capacity (TLC) and at residual volume (RV). Lobar volumes were measured on CT imaging using a semiautomated technique. The correlations between CT and PFT volumes were computed for 486 subjects at baseline. Reproducibility was assessed in terms of the intraclass correlation coefficient (ICC) for 126 subjects from the control group at TLC and 120 subjects at RV. RESULTS: Correlations between CT and PFT lung volumes were 0.86 at TLC and 0.67 at RV. At TLC, the ICCs were 0.943 for CT imaging and 0.814 for PFT. At RV, the ICCs were 0.886 for CT imaging and 0.683 for PFT. CT lobar volumes showed good reproducibility (all P values < .05). CONCLUSION: CT lung and lobar volume measurements could be captured in a multicenter trial setting with high reproducibility and were highly correlated with those obtained on PFT. CT imaging showed significantly better reproducibility than PFT between interval lung volume measurements, offering the potential for designing emphysema treatment trials involving fewer subjects.


Subject(s)
Imaging, Three-Dimensional/methods , Lung/diagnostic imaging , Pulmonary Emphysema/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Radiography, Thoracic/methods , Tomography, X-Ray Computed/methods , Female , Humans , Male , Middle Aged , Radiographic Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
18.
AJR Am J Roentgenol ; 193(5): 1340-5, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19843751

ABSTRACT

OBJECTIVE: The aims of this study were to estimate the dose to radiosensitive organs (glandular breast and lung) in patients of various sizes undergoing routine chest CT examinations with and without tube current modulation; to quantify the effect of tube current modulation on organ dose; and to investigate the relation between patient size and organ dose to breast and lung resulting from chest CT examinations. MATERIALS AND METHODS: Thirty voxelized models generated from images of patients were extended to include lung contours and were used to represent a cohort of women of various sizes. Monte Carlo simulation-based virtual MDCT scanners had been used in a previous study to estimate breast dose from simulations of a fixed-tube-current and a tube current-modulated chest CT examinations of each patient model. In this study, lung doses were estimated for each simulated examination, and the percentage organ dose reduction attributed to tube current modulation was correlated with patient size for both glandular breast and lung tissues. RESULTS: The average radiation dose to lung tissue from a chest CT scan obtained with fixed tube current was 23 mGy. The use of tube current modulation reduced the lung dose an average of 16%. Reductions in organ dose (up to 56% for lung) due to tube current modulation were more substantial among smaller patients than larger. For some larger patients, use of tube current modulation for chest CT resulted in an increase in organ dose to the lung as high as 33%. For chest CT, lung dose and breast dose estimates had similar correlations with patient size. On average the two organs receive approximately the same dose effects from tube current modulation. CONCLUSION: The dose to radiosensitive organs during fixed-tube-current and tube current-modulated chest CT can be estimated on the basis of patient size. Organ dose generally decreases with the use of tube current-modulated acquisition, but patient size can directly affect the dose reduction achieved.


Subject(s)
Breast/radiation effects , Lung/radiation effects , Radiation Dosage , Radiometry/methods , Tomography, X-Ray Computed , Adolescent , Adult , Aged, 80 and over , Computer Simulation , Female , Humans , Monte Carlo Method , Radiography, Thoracic
19.
Med Phys ; 36(6): 2154-64, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19610304

ABSTRACT

The purpose of this study was to present a method for generating x-ray source models for performing Monte Carlo (MC) radiation dosimetry simulations of multidetector row CT (MDCT) scanners. These so-called "equivalent" source models consist of an energy spectrum and filtration description that are generated based wholly on the measured values and can be used in place of proprietary manufacturer's data for scanner-specific MDCT MC simulations. Required measurements include the half value layers (HVL1 and HVL2) and the bowtie profile (exposure values across the fan beam) for the MDCT scanner of interest. Using these measured values, a method was described (a) to numerically construct a spectrum with the calculated HVLs approximately equal to those measured (equivalent spectrum) and then (b) to determine a filtration scheme (equivalent filter) that attenuates the equivalent spectrum in a similar fashion as the actual filtration attenuates the actual x-ray beam, as measured by the bowtie profile measurements. Using this method, two types of equivalent source models were generated: One using a spectrum based on both HVL1 and HVL2 measurements and its corresponding filtration scheme and the second consisting of a spectrum based only on the measured HVL1 and its corresponding filtration scheme. Finally, a third type of source model was built based on the spectrum and filtration data provided by the scanner's manufacturer. MC simulations using each of these three source model types were evaluated by comparing the accuracy of multiple CT dose index (CTDI) simulations to measured CTDI values for 64-slice scanners from the four major MDCT manufacturers. Comprehensive evaluations were carried out for each scanner using each kVp and bowtie filter combination available. CTDI experiments were performed for both head (16 cm in diameter) and body (32 cm in diameter) CTDI phantoms using both central and peripheral measurement positions. Both equivalent source model types result in simulations with an average root mean square (RMS) error between the measured and simulated values of approximately 5% across all scanner and bowtie filter combinations, all kVps, both phantom sizes, and both measurement positions, while data provided from the manufacturers gave an average RMS error of approximately 12% pooled across all conditions. While there was no statistically significant difference between the two types of equivalent source models, both of these model types were shown to be statistically significantly different from the source model based on manufacturer's data. These results demonstrate that an equivalent source model based only on measured values can be used in place of manufacturer's data for Monte Carlo simulations for MDCT dosimetry.


Subject(s)
Algorithms , Body Burden , Filtration/methods , Models, Biological , Radiometry/methods , Tomography, X-Ray Computed/methods , Computer Simulation , Humans , Monte Carlo Method , Relative Biological Effectiveness , Scattering, Radiation
20.
Med Phys ; 36(5): 1494-9, 2009 May.
Article in English | MEDLINE | ID: mdl-19544765

ABSTRACT

An anthropomorphic pediatric phantom (5-yr-old equivalent) was used to determine organ doses at specific surface and internal locations resulting from computed tomography (CT) scans. This phantom contains four different tissue-equivalent materials: Soft tissue, bone, brain, and lung. It was imaged on a 64-channel CT scanner with three head protocols (one contiguous axial scan and two helical scans [pitch = 0.516 and 0.984]) and four chest protocols (one contiguous axial scan and three helical scans [pitch = 0.516, 0.984, and 1.375]). Effective mA s [= (tube current x rotation time)/pitch] was kept nearly constant at 200 effective mA s for head and 290 effective mA s for chest protocols. Dose measurements were acquired using thermoluminescent dosimeter powder in capsules placed at locations internal to the phantom and on the phantom surface. The organs of interest were the brain, both eyes, thyroid, sternum, both breasts, and both lungs. The organ dose measurements from helical scans were lower than for contiguous axial scans by 0% to 25% even after adjusting for equivalent effective mA s. There was no significant difference (p > 0.05) in organ dose values between the 0.516 and 0.984 pitch values for both head and chest scans. The chest organ dose measurements obtained at a pitch of 1.375 were significantly higher than the dose values obtained at the other helical pitches used for chest scans (p < 0.05). This difference was attributed to the automatic selection of the large focal spot due to a higher tube current value. These findings suggest that there may be a previously unsuspected radiation dose benefit associated with the use of helical scan mode during computed tomography scanning.


Subject(s)
Body Burden , Models, Biological , Radiometry/methods , Tomography, Spiral Computed/methods , Whole-Body Counting/methods , Child, Preschool , Computer Simulation , Female , Humans , Male , Radiation Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...