Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anesth Analg ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640076

ABSTRACT

BACKGROUND: Over the past decade, artificial intelligence (AI) has expanded significantly with increased adoption across various industries, including medicine. Recently, AI-based large language models such as Generative Pretrained Transformer-3 (GPT-3), Bard, and Generative Pretrained Transformer-3 (GPT-4) have demonstrated remarkable language capabilities. While previous studies have explored their potential in general medical knowledge tasks, here we assess their clinical knowledge and reasoning abilities in a specialized medical context. METHODS: We studied and compared the performance of all 3 models on both the written and oral portions of the comprehensive and challenging American Board of Anesthesiology (ABA) examination, which evaluates candidates' knowledge and competence in anesthesia practice. RESULTS: Our results reveal that only GPT-4 successfully passed the written examination, achieving an accuracy of 78% on the basic section and 80% on the advanced section. In comparison, the less recent or smaller GPT-3 and Bard models scored 58% and 47% on the basic examination, and 50% and 46% on the advanced examination, respectively. Consequently, only GPT-4 was evaluated in the oral examination, with examiners concluding that it had a reasonable possibility of passing the structured oral examination. Additionally, we observe that these models exhibit varying degrees of proficiency across distinct topics, which could serve as an indicator of the relative quality of information contained in the corresponding training datasets. This may also act as a predictor for determining which anesthesiology subspecialty is most likely to witness the earliest integration with AI. CONCLUSIONS: GPT-4 outperformed GPT-3 and Bard on both basic and advanced sections of the written ABA examination, and actual board examiners considered GPT-4 to have a reasonable possibility of passing the real oral examination; these models also exhibit varying degrees of proficiency across distinct topics.

2.
J Chem Inf Model ; 64(6): 1975-1983, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38483315

ABSTRACT

Most online chemical reaction databases are not publicly accessible or are fully downloadable. These databases tend to contain reactions in noncanonicalized formats and often lack comprehensive information regarding reaction pathways, intermediates, and byproducts. Within the few publicly available databases, reactions are typically stored in the form of unbalanced, overall transformations with minimal interpretability of the underlying chemistry. These limitations present significant obstacles to data-driven applications including the development of machine learning models. As an effort to overcome these challenges, we introduce PMechDB, a publicly accessible platform designed to curate, aggregate, and share polar chemical reaction data in the form of elementary reaction steps. Our initial version of PMechDB consists of over 100,000 such steps. In the PMechDB, all reactions are stored as canonicalized and balanced elementary steps, featuring accurate atom mapping and arrow-pushing mechanisms. As an online interactive database, PMechDB provides multiple interfaces that enable users to search, download, and upload chemical reactions. We anticipate that the public availability of PMechDB and its standardized data representation will prove beneficial for chemoinformatics research and education and the development of data-driven, interpretable models for predicting reactions and pathways. PMechDB platform is accessible online at https://deeprxn.ics.uci.edu/pmechdb.


Subject(s)
Databases, Chemical , Databases, Factual
3.
JAMIA Open ; 6(4): ooad084, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37860605

ABSTRACT

Objectives: Artificial intelligence (AI) holds great promise for transforming the healthcare industry. However, despite its potential, AI is yet to see widespread deployment in clinical settings in significant part due to the lack of publicly available clinical data and the lack of transparency in the published AI algorithms. There are few clinical data repositories publicly accessible to researchers to train and test AI algorithms, and even fewer that contain specialized data from the perioperative setting. To address this gap, we present and release the Medical Informatics Operating Room Vitals and Events Repository (MOVER). Materials and Methods: This first release of MOVER includes adult patients who underwent surgery at the University of California, Irvine Medical Center from 2015 to 2022. Data for patients who underwent surgery were captured from 2 different sources: High-fidelity physiological waveforms from all of the operating rooms were captured in real time and matched with electronic medical record data. Results: MOVER includes data from 58 799 unique patients and 83 468 surgeries. MOVER is available for download at https://doi.org/10.24432/C5VS5G, it can be downloaded by anyone who signs a data usage agreement (DUA), to restrict traffic to legitimate researchers. Discussion: To the best of our knowledge MOVER is the only freely available public data repository that contains electronic health record and high-fidelity physiological waveforms data for patients undergoing surgery. Conclusion: MOVER is freely available to all researchers who sign a DUA, and we hope that it will accelerate the integration of AI into healthcare settings, ultimately leading to improved patient outcomes.

4.
medRxiv ; 2023 May 16.
Article in English | MEDLINE | ID: mdl-37292642

ABSTRACT

Over the past decade, Artificial Intelligence (AI) has expanded significantly with increased adoption across various industries, including medicine. Recently, AI's large language models such as GPT-3, Bard, and GPT-4 have demonstrated remarkable language capabilities. While previous studies have explored their potential in general medical knowledge tasks, here we assess their clinical knowledge and reasoning abilities in a specialized medical context. We study and compare their performances on both the written and oral portions of the comprehensive and challenging American Board of Anesthesiology (ABA) exam, which evaluates candidates' knowledge and competence in anesthesia practice. In addition, we invited two board examiners to evaluate AI's answers without disclosing to them the origin of those responses. Our results reveal that only GPT-4 successfully passed the written exam, achieving an accuracy of 78% on the basic section and 80% on the advanced section. In comparison, the less recent or smaller GPT-3 and Bard models scored 58% and 47% on the basic exam, and 50% and 46% on the advanced exam, respectively. Consequently, only GPT-4 was evaluated in the oral exam, with examiners concluding that it had a high likelihood of passing the actual ABA exam. Additionally, we observe that these models exhibit varying degrees of proficiency across distinct topics, which could serve as an indicator of the relative quality of information contained in the corresponding training datasets. This may also act as a predictor for determining which anesthesiology subspecialty is most likely to witness the earliest integration with AI.

5.
medRxiv ; 2023 Mar 12.
Article in English | MEDLINE | ID: mdl-36945552

ABSTRACT

Artificial Intelligence (AI) holds great promise for transforming the healthcare industry. However, despite its potential, AI is yet to see widespread deployment in clinical settings in significant part due to the lack of publicly available clinical data and the lack of transparency in the published AI algorithms. There are few clinical data repositories publicly accessible to researchers to train and test AI algorithms, and even fewer that contain specialized data from the perioperative setting. To address this gap, we present and release the Medical Informatics Operating Room Vitals and Events Repository, which includes data from 58,799 unique patients and 83,468 surgeries collected from the UCI Medical Center over a period of seven years. MOVER is freely available to all researchers who sign a data usage agreement, and we hope that it will accelerate the integration of AI into healthcare settings, ultimately leading to improved patient outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...