Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 11(19): 3680-91, 2009 May 21.
Article in English | MEDLINE | ID: mdl-19421479

ABSTRACT

A flexible colloidal seeded-growth strategy has been developed to synthesize all-oxide semiconductor/magnetic hybrid nanocrystals (HNCs) in various topological arrangements, for which the dimensions of the constituent material domains can be controlled independently over a wide range. Our approach relies on driving preferential heterogeneous nucleation and growth of spinel cubic iron oxide (IO) domains onto brookite TiO2 nanorods (b-TiO2) with tailored geometric parameters, by means of time-programmed delivery of organometallic precursors into a suitable TiO2-loaded surfactant environment. The b-TiO2 seeds exhibit size-dependent accessibility towards IO under diffusion-controlled growth regime, which allows attainment of HNCs individually made of a single b-TiO2 section functionalized with either one or multiple nearly spherical IO domains. In spite of the dissimilarity of the respective crystal-phases, the two materials share large interfacial junctions without significant lattice strain being induced across the heterostructures. The synthetic achievements have been supported by a systematic morphological, compositional and structural characterization of the as-prepared HNCs, offering a mechanistic insight into the specific role of the seeds in the control of heterostructure formation in liquid media. In addition, the impact of the formed b-TiO2/IO heterojunctions on the magnetic properties of IO has also been assessed.

2.
Mol Biol Cell ; 15(4): 1609-22, 2004 Apr.
Article in English | MEDLINE | ID: mdl-14742702

ABSTRACT

The Dis1/TOG family plays a pivotal role in microtubule organization. In fission yeast, Alp14 and Dis1 share an essential function in bipolar spindle formation. Here, we characterize Alp7, a novel coiled-coil protein that is required for organization of bipolar spindles. Both Alp7 and Alp14 colocalize to the spindle pole body (SPB) and mitotic spindles. Alp14 localization to these sites is fully dependent upon Alp7. Conversely, in the absence of Alp14, Alp7 localizes to the SPBs, but not mitotic spindles. Alp7 forms a complex with Alp14, where the C-terminal region of Alp14 interacts with the coiled-coil domain of Alp7. Intriguingly, this Alp14 C terminus is necessary and sufficient for mitotic spindle localization. Overproduction of either full-length or coiled-coil region of Alp7 results in abnormal V-shaped spindles and stabilization of interphase microtubules, which is induced independent of Alp14. Alp7 may be a functional homologue of animal TACC. Our results shed light on an interdependent relationship between Alp14/TOG and Alp7. We propose a two-step model that accounts for the recruitment of Alp7 and Alp14 to the SPB and microtubules.


Subject(s)
Microtubule-Associated Proteins/physiology , Microtubules/ultrastructure , Schizosaccharomyces pombe Proteins/physiology , Schizosaccharomyces/physiology , Spindle Apparatus , Binding Sites , Fluorescent Antibody Technique, Indirect , Genotype , Green Fluorescent Proteins , Immunohistochemistry , Kinetochores , Luminescent Proteins/metabolism , Microtubule-Associated Proteins/chemistry , Mitosis , Models, Biological , Plasmids/metabolism , Protein Binding , Protein Structure, Tertiary , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/chemistry , Temperature , Time Factors , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL