Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 358(6367): 1175-1179, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29191906

ABSTRACT

Quantized eigenenergies and their associated wave functions provide extensive information for predicting the physics of quantum many-body systems. Using a chain of nine superconducting qubits, we implement a technique for resolving the energy levels of interacting photons. We benchmark this method by capturing the main features of the intricate energy spectrum predicted for two-dimensional electrons in a magnetic field-the Hofstadter butterfly. We introduce disorder to study the statistics of the energy levels of the system as it undergoes the transition from a thermalized to a localized phase. Our work introduces a many-body spectroscopy technique to study quantum phases of matter.

2.
Sci Rep ; 7(1): 2355, 2017 05 24.
Article in English | MEDLINE | ID: mdl-28539580

ABSTRACT

A toolbox for the quantum simulation of polarons in ultracold atoms is presented. Motivated by the impressive experimental advances in the area of ultracold atomic mixtures, we theoretically study the problem of ultracold atomic impurities immersed in a Bose-Einstein condensate mixture (BEC). The coupling between impurity and BEC gives rise to the formation of polarons whose mutual interaction can be effectively tuned using an external laser driving a quasi-resonant Raman transition between the BEC components. Our scheme allows one to change the effective interactions between polarons in different sites from attractive to zero. This is achieved by simply changing the intensity and the frequency of the two lasers. Such arrangement opens new avenues for the study of strongly correlated condensed matter models in ultracold gases.

3.
Phys Rev Lett ; 118(4): 049903, 2017 Jan 27.
Article in English | MEDLINE | ID: mdl-28186792

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevLett.117.250401.

4.
Phys Rev Lett ; 117(25): 250401, 2016 Dec 16.
Article in English | MEDLINE | ID: mdl-28036226

ABSTRACT

We provide an analytic solution to the problem of system-bath dynamics under the effect of high-frequency driving that has applications in a large class of settings, such as driven-dissipative many-body systems. Our method relies on discrete symmetries of the system-bath Hamiltonian and provides the time evolution operator of the full system, including bath degrees of freedom, without weak-coupling or Markovian assumptions. An interpretation of the solution in terms of the stroboscopic evolution of a family of observables under the influence of an effective static Hamiltonian is proposed, which constitutes a flexible simulation procedure of nontrivial Hamiltonians. We instantiate the result with the study of the spin-boson model with time-dependent tunneling amplitude. We analyze the class of Hamiltonians that may be stroboscopically accessed for this example and illustrate the dynamics of system and bath degrees of freedom.

5.
Phys Rev E ; 94(3-1): 032123, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27739785

ABSTRACT

In this work we study a one-dimensional lattice of Lipkin-Meshkov-Glick models with alternating couplings between nearest-neighbors sites, which resembles the Su-Schrieffer-Heeger model. Typical properties of the underlying models are present in our semiclassical-topological hybrid system, allowing us to investigate an interplay between semiclassical bifurcations at mean-field level and topological phases. Our results show that bifurcations of the energy landscape lead to diverse ordered quantum phases. Furthermore, the study of the quantum fluctuations around the mean-field solution reveals the existence of nontrivial topological phases. These are characterized by the emergence of localized states at the edges of a chain with free open-boundary conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...