Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
MicroPubl Biol ; 20242024.
Article in English | MEDLINE | ID: mdl-38550606

ABSTRACT

Alpha-synuclein plays a pivotal role in Parkinson's disease (PD) pathogenesis, with α-synuclein aggregates/oligomers being identified as toxic species and phosphorylation at Serine 129 promoting aggregation/oligomerization. We investigated the biochemical profile of α-synuclein in the "weaver" mouse, a genetic PD model. Our results revealed increased Serine 129 phosphorylation in the midbrain, striatum, and cortex at a phase of established dopaminergic degeneration on postnatal day 100. These results indicate α-synuclein pathology already at this stage and the potential for age-related progress. Our findings confirm that the "weaver" mouse is an invaluable genetic model to study α-synuclein pathogenesis during PD progression.

2.
Stem Cell Res Ther ; 12(1): 335, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34112234

ABSTRACT

BACKGROUND: Loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) underlines much of the pathology of Parkinson's disease (PD), but the existence of an endogenous neurogenic system that could be targeted as a therapeutic strategy has been controversial. BNN-20 is a synthetic, BDNF-mimicking, microneurotrophin that we previously showed to exhibit a pleiotropic neuroprotective effect on the dopaminergic neurons of the SNpc in the "weaver" mouse model of PD. Here, we assessed its potential effects on neurogenesis. METHODS: We quantified total numbers of dopaminergic neurons in the SNpc of wild-type and "weaver" mice, with or without administration of BNN-20, and we employed BrdU labelling and intracerebroventricular injections of DiI to evaluate the existence of dopaminergic neurogenesis in the SNpc and to assess the origin of newborn dopaminergic neurons. The in vivo experiments were complemented by in vitro proliferation/differentiation assays of adult neural stem cells (NSCs) isolated from the substantia nigra and the subependymal zone (SEZ) stem cell niche to further characterize the effects of BNN-20. RESULTS: Our analysis revealed the existence of a low-rate turnover of dopaminergic neurons in the normal SNpc and showed, using three independent lines of experiments (stereologic cell counts, BrdU and DiI tracing), that the administration of BNN-20 leads to increased neurogenesis in the SNpc and to partial reversal of dopaminergic cell loss. The newly born dopaminergic neurons, that are partially originated from the SEZ, follow the typical nigral maturation pathway, expressing the transcription factor FoxA2. Importantly, the pro-cytogenic effects of BNN-20 were very strong in the SNpc, but were absent in other brain areas such as the cortex or the stem cell niche of the hippocampus. Moreover, although the in vitro assays showed that BNN-20 enhances the differentiation of NSCs towards glia and neurons, its in vivo administration stimulated only neurogenesis. CONCLUSIONS: Our results demonstrate the existence of a neurogenic system in the SNpc that can be manipulated in order to regenerate the depleted dopaminergic cell population in the "weaver" PD mouse model. Microneurotrophin BNN-20 emerges as an excellent candidate for future PD cell replacement therapies, due to its area-specific, pro-neurogenic effects.


Subject(s)
Neurogenesis , Substantia Nigra , Animals , Dopamine , Dopaminergic Neurons , Homeostasis , Mice
3.
Neuropharmacology ; 165: 107919, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31877321

ABSTRACT

BNN-20 is a synthetic microneurotrophin, long-term (P1-P21) administration of which exerts potent neuroprotective effect on the "weaver" mouse, a genetic model of progressive, nigrostriatal dopaminergic degeneration. The present study complements and expands our previous work, providing evidence that BNN-20 fully protects the dopaminergic neurons even when administration begins at a late stage of dopaminergic degeneration (>40%). Since neuroinflammation plays a critical role in Parkinson's disease, we investigated the possible anti-neuroinflammatory mechanisms underlying the pharmacological action of BNN-20. The latter was shown to be microglia-mediated, at least in part. Indeed, BNN-20 induced a partial, but significant, reversal of microglia hyperactivation, observed in the untreated "weaver" mouse. Furthermore, it induced a shift in microglia polarization towards the neuroprotective M2 phenotype, suggesting a possible beneficial shifting of microglia activity. This observation was further supported by morphometric measurements. Moreover, BDNF levels, which were severely reduced in the "weaver" mouse midbrain, were restored to normal even after short-term BNN-20 administration. Experiments in "weaver"/NGL (dual GFP/luciferase-NF-κВ reporter) mice using bioluminescence after a short BNN-20 treatment (P60-P74), have shown that the increase of BDNF production was specifically mediated through the TrkB-PI3K-Akt-NF-κB signaling pathway. Interestingly, long-term BNN-20 treatment (P14-P60) significantly increased dopamine levels in the "weaver" striatum, which seems to be associated with the improved motor activity observed in the treated mutant animals. In conclusion, our findings suggest that BNN-20 may serve as a lead molecule for new therapeutic compounds for Parkinson's disease, combining strong anti-neuroinflammatory and neuroprotective properties, leading to elevated dopamine levels and improved motor activity.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Dehydroepiandrosterone/analogs & derivatives , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Encephalitis/metabolism , Neuroprotective Agents/administration & dosage , Parkinson Disease/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , Dehydroepiandrosterone/administration & dosage , Disease Models, Animal , Encephalitis/complications , Encephalitis/prevention & control , Female , Male , Membrane Glycoproteins/metabolism , Mice, Neurologic Mutants , Microglia/drug effects , Microglia/metabolism , Parkinson Disease/complications , Parkinson Disease/prevention & control , Pars Compacta/drug effects , Pars Compacta/metabolism , Protein-Tyrosine Kinases/metabolism , Tyrosine 3-Monooxygenase/metabolism
4.
Neurochem Res ; 43(3): 650-658, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29327309

ABSTRACT

An ischemia/reperfusion injury of rat's sciatic nerve was experimentally developed. In this model, we measured the in vivo production of superoxide radical, as a marker of oxidative stress and the occludin expression as an indicator of blood-nerve barrier function and we examined potential protective innervations against these abnormalities. Right sciatic nerves of the animals underwent 3 h of ischemia followed by 7 days of reperfusion and were divided into three groups: ischemic, pretreated with vitamin C in conjunction with vitamin E and treated with tissue plasminogen activator. Compared to measurements from left sciatic nerves used as sham, the ischemic group showed significantly increased superoxide radical and reduced expression of occludin in western blot and immunohistochemistry. No such differences were detected between sham and nerves in the vitamin or tissue plasminogen activator groups. It is suggested that the experimental ischemia/reperfusion model was suitable for studying the relationship between oxidative state and blood-nerve barrier. The reversion of abnormalities by the applied neuroprotective agents might prove to be a clinically important finding in view of the implication of vascular supply derangement in various neuropathies in humans.


Subject(s)
Ascorbic Acid/metabolism , Neuroprotective Agents/pharmacology , Sciatic Nerve/metabolism , Tissue Plasminogen Activator/metabolism , Vitamin D/metabolism , Animals , Ischemia/metabolism , Male , Oxidative Stress/drug effects , Oxidative Stress/physiology , Rats, Wistar , Reperfusion Injury/metabolism
5.
J Neurochem ; 145(3): 217-231, 2018 05.
Article in English | MEDLINE | ID: mdl-29205377

ABSTRACT

Interaction between mGluR5 and NMDA receptors (NMDAR) is vital for synaptic plasticity and cognition. We recently demonstrated that stimulation of mGluR5 enhances NMDAR responses in hippocampus by phosphorylating NR2B(Tyr1472) subunit, and this reaction was enabled by adenosine A2A receptors (A2A R) (J Neurochem, 135, 2015, 714). In this study, by using in vitro phosphorylation and western blot analysis in hippocampal slices of male Wistar rats, we show that mGluR5 stimulation or mGluR5/NMDARs co-stimulation synergistically activate ERK1/2 signaling leading to c-Fos expression. Interestingly, both reactions are under the permissive control of endogenous adenosine acting through A2A Rs. Moreover, mGluR5-mediated ERK1/2 phosphorylation depends on NMDAR, which however exhibits a metabotropic way of function, since no ion influx through its ion channel is required. Furthermore, our results demonstrate that mGluR5 and mGluR5/NMDAR-evoked ERK1/2 activation correlates well with the mGluR5/NMDAR-evoked NR2B(Tyr1472) phosphorylation, since both phenomena coincide temporally, are Src dependent, and are both enabled by A2A Rs. This indicates a functional involvement of NR2B(Tyr1472) phosphorylation in the ERK1/2 activation. Our biochemical results are supported by electrophysiological data showing that in CA1 region of hippocampus, the theta burst stimulation (TBS)-induced long-term potentiation coincides temporally with an increase in ERK1/2 activation and both phenomena are dependent on the tripartite A2A , mGlu5, and NMDARs. Furthermore, we show that the dopamine D1 receptors evoked ERK1/2 activation as well as the NR2B(Tyr1472) phosphorylation are also regulated by endogenous adenosine and A2A Rs. In conclusion, our results highlight the A2A Rs as a crucial regulator not only for NMDAR responses, but also for regulating ERK1/2 signaling and its downstream pathways, leading to gene expression, synaptic plasticity, and memory consolidation.


Subject(s)
Hippocampus/metabolism , MAP Kinase Signaling System/physiology , Receptor, Adenosine A2A/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Receptors, Dopamine D1/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Gene Expression Regulation/physiology , Glutamic Acid/metabolism , Long-Term Potentiation/physiology , Male , Memory Consolidation/physiology , Organ Culture Techniques , Phosphorylation , Rats , Rats, Wistar
6.
Neuropharmacology ; 121: 140-157, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28461162

ABSTRACT

Neurotrophic factors are among the most promising treatments aiming at slowing or stopping and even reversing Parkinson's disease (PD). However, in most cases, they cannot readily cross the human blood-brain-barrier (BBB). Herein, we propose as a therapeutic for PD the small molecule 17-beta-spiro-[5-androsten-17,2'-oxiran]-3beta-ol (BNN-20), a synthetic analogue of DHEA, which crosses the BBB and is deprived of endocrine side-effects. Using the "weaver" mouse, a genetic model of PD, which exhibits progressive dopaminergic neurodegeneration in the Substantia Nigra (SN), we have shown that long-term administration (P1-P21) of BNN-20 almost fully protected the dopaminergic neurons and their terminals, via i) a strong anti-apoptotic effect, probably mediated through the Tropomyosin receptor kinase B (TrkB) neurotrophin receptor's PI3K-Akt-NF-κB signaling pathway, ii) by exerting an efficient antioxidant effect, iii) by inducing significant anti-inflammatory activity and iv) by restoring Brain-Derived Neurotrophic Factor (BDNF) levels. By intercrossing "weaver" with NGL mice (dual GFP/luciferase-NF-κΒ reporter mice, NF-κΒ.GFP.Luc), we obtained Weaver/NGL mice that express the NF-κB reporter in all somatic cells. Acute BNN-20 administration to Weaver/NGL mice induced a strong NF-κB-dependent transcriptional response in the brain as detected by bioluminescence imaging, which was abolished by co-administration of the TrkB inhibitor ANA-12. This indicates that BNN-20 exerts its beneficial action (at least in part) through the TrkB-PI3K-Akt-NF-κB signaling pathway. These results could be of clinical relevance, as they suggest BNN-20 as an important neuroprotective agent acting through the TrkB neurotrophin receptor pathway, mimicking the action of the endogenous neurotrophin BDNF. Thus BNN-20 could be proposed for treatment of PD.


Subject(s)
Dehydroepiandrosterone/analogs & derivatives , Dopamine/metabolism , Dopaminergic Neurons/drug effects , Mesencephalon/cytology , Receptor, trkB/metabolism , Adjuvants, Immunologic/pharmacology , Animals , Animals, Newborn , Antigens, CD1/metabolism , Azepines/pharmacology , Benzamides/pharmacology , CHO Cells , Cricetulus , Dehydroepiandrosterone/pharmacology , Dopamine Plasma Membrane Transport Proteins/metabolism , Female , Male , Mesencephalon/drug effects , Mesencephalon/metabolism , Mice , Mice, Neurologic Mutants , Models, Genetic , Signal Transduction/drug effects , Signal Transduction/physiology , Tubulin/metabolism , Tyrosine 3-Monooxygenase/metabolism
7.
J Neurochem ; 135(4): 714-26, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26303340

ABSTRACT

A great body of evidence points toward a functional interaction between metabotropic glutamate 5 receptors (mGluR5) and NMDA receptors (NMDAR) that enhances synaptic plasticity and cognition. However, the molecular mechanism underlying this interaction remains unclear. Here, we show that co-activation of mGluR5 and NMDAR in hippocampal slices synergistically leads to a robust phosphorylation of NR2B (Tyr1472), which is Src kinase dependent and is enabled by endogenous adenosine acting on A2A receptors. As it is well known, NR2B (Tyr1472) phosphorylation anchors NR2B-containing NMDARs to the surface of post-synaptic membranes, preventing their internalization. This is supported by our electrophysiological experiments showing that co-activation of mGluR5 and NMDARs robustly enhances NMDAR-dependent neuronal excitability recorded in CA1 hippocampal region, which temporally coincides with the robust increase in NR2B (Tyr1472) phosphorylation, depends on Src kinases and is also permitted by A2A receptors. Thus, we strongly suggest that NR2B (Tyr1472) phosphorylation constitutes, at least to some extent, the molecular mechanism underlying the mGluR5-mediated enhancement of NMDAR-dependent responses, which is modulated by A2A receptors. A better understanding of the molecular basis of mGluR5/NMDAR interaction would elucidate their role in synaptic plasticity processes as well as in pathological conditions. We propose the following molecular mechanism by which metabotropic Glutamate Receptor 5 (mGluR5) potentiate ionotropic Glutamate N-Methyl-D-Aspartate Receptor (NMDAR) responses in rat hippocampus. Co-activation of mGLUR5/NMDAR activates Src kinases, leading to NR2B(Tyr1472) phosphorylation, which anchors NR2B-containing NMDAR to the plasma membrane, thus inducing a robust increase in the NMDA-dependent excitability. Interestingly, adenosine A2A receptors license the mGluR5-induced NR2B(Tyr1472) phosphorylation.


Subject(s)
Hippocampus/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Receptors, Adenosine A2/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Tyrosine/metabolism , Animals , Dose-Response Relationship, Drug , Drug Interactions , Excitatory Amino Acid Agents/pharmacology , Hippocampus/drug effects , In Vitro Techniques , Male , Patch-Clamp Techniques , Phosphorylation/drug effects , Phosphorylation/physiology , Purinergic Agents/pharmacology , Rats , Rats, Wistar , Receptor, Metabotropic Glutamate 5/genetics , Receptors, Adenosine A2/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Statistics, Nonparametric
8.
Acta Neurochir (Wien) ; 155(3): 497-505, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23334750

ABSTRACT

BACKGROUND: High-frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) has become an established therapeutic approach for the management of patients with late-stage idiopathic Parkinson's disease (PD). The aim of the present study was to assess regional cerebral blood flow (rCBF) changes related to motor improvement. METHODS: Twenty-one PD patients underwent two rCBF SPECT studies at rest, once preoperatively in the off-meds state and the other postoperatively (at 6 ± 2 months) in the off medication/on stimulation state. Patients were classified according to the UPDRS and H&Y scale. NeuroGam software was used to register, quantify, and compare two sequential brain SPECT studies of the same patient in order to investigate rCBF changes during STN stimulation in comparison with preoperative rCBF. The relationship between rCBF and UPDRS scores was used as a covariate of interest. RESULTS: Twenty patients showed clinical improvement during the first months after surgery, resulting in a 44 % reduction of the UPDRS motor score. The administered mean daily levodopa dose significantly decreased from 850 ± 108 mg before surgery to 446 ± 188 mg during the off-meds state (p < 0.001, paired t test). At the 6-month postoperative assessment, we noticed rCBF increases in the pre-supplementary motor area (pre-SMA) and the premotor cortex (PMC) (mean rCBF increase = 10.2 %, p < 0.05), the dorsolateral prefrontal cortex and in associative and limbic territories of the frontal cortex (mean rCBF increase = 8.2 %, p > 0.05). A correlation was detected between the improvement in motor scores and the rCBF increase in the pre-SMA and PMC (r = 0.89, p < 0.001). CONCLUSIONS: Our study suggests that STN stimulation leads to improvement in neural activity and rCBF increase in higher-order motor cortical areas.


Subject(s)
Brain/blood supply , Deep Brain Stimulation , Image Interpretation, Computer-Assisted , Motor Skills/physiology , Neurologic Examination , Parkinson Disease/diagnostic imaging , Parkinson Disease/therapy , Regional Blood Flow/physiology , Tomography, Emission-Computed, Single-Photon , Aged , Aged, 80 and over , Female , Frontal Lobe/blood supply , Humans , Limbic System/blood supply , Male , Motor Cortex/blood supply , Parkinson Disease/physiopathology , Software , Subthalamic Nucleus/physiopathology , Treatment Outcome
9.
Neurochem Int ; 60(1): 55-67, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22080157

ABSTRACT

Interactions between dopamine and glutamate receptors are essential for prefrontal cortical (PFC) and hippocampal cognitive functions. The hippocampus has been identified as a detector of a novel stimulus, where an association between incoming information and stored memories takes place. Further to our previous results which showed a strong synergistic interaction of dopamine D1 and glutamate NMDA receptors, the present study is going to investigate the functional status of that interaction in rats, following their exposure to a novel environment. Our results showed that the "spatial" novelty induced in rat hippocampus and PFC (a) a significant increase in phosphorylation of NMDA and AMPA receptor subunits, as well as a robust phosphorylation/activation of ERK1/2 signaling, which are both dependent on the concomitant stimulation of D1/NMDA receptors and are both abolished by habituation procedure, (b) chromatin remodeling events (phosphorylation-acetylation of histone H3) and (c) an increase in the immediate early genes (IEGs) c-Fos and zif-268 expression in the CA1 region of hippocampus, which is dependent on the co-activation of D1/NMDA and acetylcholine muscarinic receptors. In conclusion, our results clearly show that a strong synergistic interaction of D1/NMDA receptor is required for the novelty-induced phosphorylation of NMDA and AMPA receptor subunits and for the robust activation of ERK1/2 signaling, leading to chromatin remodeling events and the expression of the IEGs c-Fos and zif-268, which are involved in the regulation of synaptic plasticity and memory consolidation.


Subject(s)
Epigenesis, Genetic , Hippocampus/metabolism , MAP Kinase Signaling System/physiology , Receptors, AMPA/metabolism , Receptors, Dopamine D1/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Environment , Epigenesis, Genetic/physiology , Gene Expression/genetics , Gene Expression/physiology , Genes, Immediate-Early/genetics , Genes, Immediate-Early/physiology , Glutamic Acid/metabolism , Male , Memory/physiology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation , Prefrontal Cortex/metabolism , Rats , Rats, Wistar , Receptors, Dopamine D1/genetics
10.
Neurochem Int ; 56(2): 245-9, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19852993

ABSTRACT

In the present study we investigated the signal transduction cascade modulated by adenosine A(2A) receptors under chronic dopamine deficiency in the "weaver" mouse. We determined the phosphorylation state of cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) at Thr34 and of Extracellular Signal-regulated Protein Kinases 1/2 (ERK1/2), under basal conditions and after in vivo stimulation of A(2A) receptors by administration of the agonist CGS21680. Our results revealed that the endogenous levels of phospho-DARPPP-32 and phospho-ERK1/2 are elevated in "weaver" striatum probably as an adaptation phenomenon to gradual dopaminergic neurodegeneration appearing in this animal model, characterized as phenocopy of Parkinson's disease. Stimulation of A(2A) receptors by CGS21680 further increases phospho-DARPP-32 but downregulates significantly the elevated phospho-ERK1/2 levels bringing them close to those observed in wild type animals. Consistently, blockade of A(2A) receptors by MSX-3 (A(2A) receptor antagonist) downregulates phospho-DARPP-32 but significantly increases even more the phosphorylation/activation of ERK1/2. These results indicate that under chronic dopamine deficiency (a) the A(2A)/cAMP/PKA/DARPP-32 cascade is overactive due to the elevated endogenous phospho-DARPP-32 levels and (b) the A(2A) receptor modulatory effect on ERK1/2 signaling is dysregulated exerting opposing action compared to that observed in normal animals (Quiroz et al., 2006), i.e. in "weaver" animals A(2A) receptor blockade increases the activity of ERK1/2 cascade. This could be of clinical relevance since A(2A) antagonists are already used in clinical trials for ameliorating Parkinson's disease (PD) symptoms.


Subject(s)
Adenosine A2 Receptor Antagonists , Corpus Striatum/metabolism , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Dopamine/metabolism , Down-Regulation , Extracellular Signal-Regulated MAP Kinases/metabolism , Animals , Corpus Striatum/enzymology , Disease Models, Animal , Male , Mice , Mice, Mutant Strains , Phosphorylation
11.
Neurochem Int ; 52(6): 1019-29, 2008 May.
Article in English | MEDLINE | ID: mdl-18069090

ABSTRACT

Several studies have indicated a functional differentiation across the septotemporal axis of rat hippocampus. Our previous results have shown that the alpha 1 beta 2 gamma 2-GABAA receptor subtype dominates in dorsal hippocampus (DH), while the alpha 2 beta 1 gamma 2-subtype prevails in ventral hippocampus (VH). We therefore studied possible differences in the pharmacological properties and receptor binding parameters of the GABAA receptor subtypes between DH and VH, by examining: (1)(a) the specific binding of [3H]-flunitrazepam (Benzodiazepine sites agonist) by using quantitative autoradiography, (b) the kinetic parameters of [3H]-flunitrazepam specific binding, by using the "wipe off" technique and (2) the competitive displacement of [3H]-flunitrazepam binding by using zolpidem (selective agonist of the alpha 1-subtype) and L-655,708 (selective inverse agonist of the alpha 5-subtype) and the enhancement of [3H]-flunitrazepam binding by using etomidate (selective positive modulator of the beta 2-subunit), in an autoradiographical saturation kinetic study. Our results showed in VH compared to DH: (A) lower level of [3H]-flunitrazepam binding, apparently due to weaker binding affinity (higher KD value), since no differences in the Bmax value could be detected, (B) higher IC50 values for zolpidem and lower IC50 values for L-655,708 and (C) higher EC50 values for etomidate. In conclusion, the lower binding for zolpidem and etomidate and the higher binding for L-655,708 observed in VH support the evidence that the alpha 1 beta 2 gamma 2-GABAA receptor subtype dominates in DH and the alpha 5-subtype prevails in VH. Further, our results suggest differential pharmacological effects of the benzodiazepines in DH compared to VH, with the sedative effects being more potent in the dorsal hippocampus.


Subject(s)
Hippocampus/metabolism , Neurons/metabolism , Receptors, GABA-A/metabolism , Animals , Binding, Competitive/drug effects , Binding, Competitive/physiology , Dose-Response Relationship, Drug , Etomidate/metabolism , Flunitrazepam/metabolism , GABA Agonists/metabolism , Hippocampus/anatomy & histology , Hippocampus/drug effects , Imidazoles/metabolism , Male , Neurons/drug effects , Organ Specificity , Protein Subunits/drug effects , Protein Subunits/metabolism , Pyridines/metabolism , Radioligand Assay , Rats , Rats, Wistar , Receptors, GABA-A/drug effects , Tritium , Zolpidem
12.
J Neurosci Res ; 82(5): 690-700, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16273537

ABSTRACT

Recent data demonstrate weaker gamma-aminobutyric acid (GABA)-ergic inhibition in ventral (VH) compared with dorsal (DH) hippocampus. Therefore, we examined possible differences regarding the GABAA receptors between VH and DH as follows: 1) the expression of the GABAA receptor subunits (alpha1/2/4/5, beta1/2/3, gamma2, delta) mRNA and protein and 2) the quantitative distribution and kinetic parameters of [3H] muscimol (GABAA receptor agonist) binding. VH compared with DH showed: 1) lower levels for alpha1, beta2, gamma2 but higher levels for alpha2 and beta1 subunits in CA1, CA2, and CA3, the differences being more pronounced in CA1 region; in the CA1 region, the mRNA levels of alpha5 were higher, whereas those of alpha4 subunit were slightly lower; in dentate gyrus, the mRNA levels of alpha4, beta3, and delta subunits were significantly lower, presumably suggesting a lower expression of the alpha4/beta3/delta receptor subtype; and 2) lower levels of [3H]muscimol binding, with the lowest value observed in CA1, apparently resulting from weaker binding affinity, insofar as the KD values were higher in VH, whereas the Bmax values were similar between DH and VH. The differences in the subunit expression and the lower affinity of GABAA receptor binding observed predominantly in the CA1 region of VH suggest that the alpha1/beta2/gamma2 GABAA receptor subtype dominates in DH, and the alpha2/beta1/gamma2 subtype prevails in VH. This could underlie the lower GABAA-mediated inhibition observed in VH and, to some extent, explain 1) the higher liability of VH for epileptic activity and 2) the differential involvement of DH and VH in cognitive and emotional processes.


Subject(s)
Hippocampus/metabolism , Neural Inhibition/physiology , Neurons/metabolism , Protein Subunits/metabolism , Receptors, GABA-A/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Binding, Competitive/physiology , GABA Agonists/pharmacology , Hippocampus/cytology , Male , Protein Subunits/genetics , RNA, Messenger/metabolism , Radioligand Assay , Rats , Rats, Wistar , Receptors, GABA-A/genetics , Synaptic Transmission/physiology
13.
Epilepsia ; 46(8): 1205-11, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16060929

ABSTRACT

PURPOSE: In the present study, we examined the effects of pentylenetetrazol (PTZ) administration on the thiol redox state (TRS), lipid peroxidation, and protein oxidation in the mouse striatum to (a) quantitate the major components of TRS and relate them to oxidative stress, and (b) investigate whether neuronal activation without synchronization, induced by subconvulsive doses of PTZ, can cause similar qualitative effects on TRS in this brain area. Specifically, we examined the TRS components glutathione (GSH), glutathione disulfide (GSSG), cysteine (CSH), protein thiols (PSH), and the protein (P) and nonprotein (NP/R) disulfides PSSR, NPSSR, NPSSC, and PSSP. METHODS: TRS components were measured photometrically (GSSG enzymatically) as were lipid peroxidation and protein oxidation. RESULTS: GSH, GSSG, and NPSSC levels are decreased by 45%, 38% and 26%, respectively, at 15 min after seizure; PSSP and PSSR levels and lipid peroxidation are increased by 47%, 200% and 22%, respectively, whereas CSH, NPSSR, PSH, PSSC, and protein carbonyl levels do not change. At 30 min after seizure, GSH, GSSG, CSH, NPSSC, and protein carbonyl levels are decreased by 26%, 62%, 25%, 40%, and 13%, respectively. PSSP and NPSSR levels are increased by 30% and 42%, respectively, whereas PSH, PSSC, PSSR, and lipid peroxidation remain unchanged. At 24 h after seizure, GSH, NPSSR, PSSR, and lipid-peroxidation levels return to normal; GSSG, CSH, NPSSC, and protein carbonyl levels are decreased by 44%, 22%, 30%, and 27%, respectively. CONCLUSIONS: The significant decrease in GSH, GSSG, CSH, and NPSSC and the increase in PSSP, NPSSR, PSSR, and lipid peroxidation after PTZ-induced seizure strongly suggest increased oxidative stress in the mouse striatum.


Subject(s)
Corpus Striatum/drug effects , Corpus Striatum/metabolism , Epilepsy/chemically induced , Lipid Peroxidation , Nerve Tissue Proteins/metabolism , Oxidative Stress/physiology , Sulfhydryl Compounds/metabolism , Animals , Cysteine/drug effects , Cysteine/metabolism , Disease Models, Animal , Disulfides/metabolism , Glutathione/drug effects , Glutathione/metabolism , Lipid Metabolism , Male , Mice , Mice, Inbred BALB C , Oxidation-Reduction , Oxidative Stress/drug effects , Pentylenetetrazole/pharmacology , Time Factors
14.
Brain Res ; 1032(1-2): 94-103, 2005 Jan 25.
Article in English | MEDLINE | ID: mdl-15680946

ABSTRACT

The effects of the hexapeptide angiotensin II (3-8) ANG IV, the selective A(1) receptor agonist cyclohexyladenosine (CHA) and the combination of ANG IV + CHA on pentylenetetrazol (PTZ)-generalized seizures; kindling development and maintenance were studied. By using in vitro quantitative receptor autoradiography, the regulation of adenosine A(1) receptor density at different time points during the kindling procedure and postkindling period was determined. ANG IV and CHA effectively reduced clonic seizures in PTZ-generalized seizure model, in PTZ-kindled mice as well as during kindling development and a week later by rechallenge with PTZ. Furthermore, coadministration of ANG IV and CHA had a strong anticonvulsant effect, both compounds acting synergistically. A significant increase of adenosine A(1) receptor density was detected in somatosensory cortex, hippocampus, amygdala and geniculate nuclei early in the kindling procedure (after the 3rd injection), which persisted at least 1 month after the end of kindling procedure. In addition, a delayed up-regulation of adenosine A(1) receptor binding was observed a week after kindling in the mamillary bodies and a month later in the motor cortex. The pretreatment with ANG IV caused a down-regulation of adenosine A(1) receptor density to the control level in most time points and brain areas. In conclusion, PTZ kindling-induced increase of adenosine A(1) receptor binding at different time points and in specific brain structures might represent an adaptive mechanism for coping with the hyperexcitability typical for this phenomenon. The antiepileptogenic effect of ANG IV could be realized partly through an adenosine-dependent mechanism.


Subject(s)
Angiotensin II/analogs & derivatives , Angiotensin II/pharmacology , Kindling, Neurologic/drug effects , Pentylenetetrazole/pharmacology , Phenylalanine/analogs & derivatives , Receptor, Adenosine A1/metabolism , Adenosine A1 Receptor Agonists , Animals , Autoradiography/methods , Brain/anatomy & histology , Brain/drug effects , Brain/metabolism , Convulsants/pharmacology , Dose-Response Relationship, Drug , Drug Interactions , Male , Mice , Mice, Inbred BALB C , Phenylalanine/pharmacology , Protein Binding/drug effects , Radioligand Assay/methods , Staining and Labeling/methods , Time Factors
15.
Epilepsy Res ; 62(1): 65-74, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15519133

ABSTRACT

In the present study we examined the effects of pentylenetetrazol (PTZ) administration on the thiol redox state (TRS), lipid peroxidation and protein oxidation in left and right mouse cerebral cortex in order (a) to quantitate the major components of the thiol redox state and relate them with oxidative stress and cortical laterality, and (b) to investigate whether neuronal activation without synchronization, induced by subconvulsive doses of PTZ, can cause similar qualitative effects on the thiol redox state. Specifically, we examined the TRS components [glutathione (GSH), glutathione disulfide (GSSG), cysteine (CSH), protein (P) thiols (PSH) and protein and non-protein (NP) mixed/symmetric disulfides (PSSR, NPSSR, NPSSC, PSSP)]. At 15 min after seizure, GSH, GSSG, CSH, NPSSC, PSSR and PSSC levels are decreased in left (14-50%) and right (11-53%) cortex while PSSP levels are increased in both left (1400%) and right (1600%) cortex. At 30 min after seizure, GSSG, CSH, NPSSC, PSSR and PSSC levels are decreased in left (14-51%) and right (18-56%) cortex while PSSP and protein carbonyl levels are increased in left (2300% and 20%, respectively) and right (2800% and 21%, respectively) cortex. At 24 h after seizure, the TRS components return to normal and protein carbonyl levels are decreased in left (16%) and right (20%) cortex. The significant decrease in GSH, GSSG, CSH, NPSSC, PSSR and PSSC, as well as the increase in protein carbonyl and the high increase in PSSP levels after PTZ-induced seizure indicate increased oxidative stress in cerebral cortex of mice, and of similar magnitude and TRS-component profiles between left and right cerebral cortex.


Subject(s)
Cerebral Cortex/metabolism , Convulsants , Epilepsy/chemically induced , Epilepsy/metabolism , Pentylenetetrazole , Sulfhydryl Compounds/metabolism , Animals , Cerebral Cortex/drug effects , Disulfides/metabolism , Lipid Peroxidation/drug effects , Male , Mice , Mice, Inbred BALB C , Nerve Tissue Proteins/metabolism , Oxidation-Reduction
16.
Brain Res ; 1024(1-2): 159-66, 2004 Oct 22.
Article in English | MEDLINE | ID: mdl-15451378

ABSTRACT

The present study examined the effect of pentylenetetrazol (PTZ) induced kindling as well as the action of the hexapeptide angiotensin IV (ANG IV) on the dopamine (DA) D1 and D2 receptor binding in the basal ganglia of the mouse brain. By using quantitative receptor autoradiography, it was found that PTZ kindling led to a decrease in DA D2 receptor density (about 20%) in all regions of the neostriatum (NS) as well as in the olfactory tubercle (OT), the nucleus accumbens (NA) and the globus pallidus, which persisted 24 h and 7 days after the kindling procedure. PTZ induced kindling also elicited a decrease in DA D1 receptor binding sites (about 10%), which however was, restricted to the rostral NS (rNA) and NA. ANG IV (0.2 mg/kg), injected prior to PTZ, not only prevented the development of the kindling process but it also reversed the kindling-induced down-regulation of both DA receptors to the control levels. Furthermore ANG IV induced an area-specific increase of DA D1 receptor density above control levels in the dorsal part of rNS. These findings suggest that DA D2 receptors could mainly contribute to epileptogenesis in the PTZ kindling model, whereas the role of DA D1 receptors is limited to particular regions in the basal ganglia. The anticonvulsant effect of ANG IV pretreatment might be influenced by a DA-related mechanism and particularly by preventing D2 receptor down-regulation as well as by an adaptive area-specific increase in DA D1 receptors.


Subject(s)
Angiotensin II/analogs & derivatives , Angiotensin II/therapeutic use , Basal Ganglia/metabolism , Dopamine D2 Receptor Antagonists , Epilepsy/prevention & control , Kindling, Neurologic/physiology , Receptors, Dopamine D1/antagonists & inhibitors , Angiotensin II/pharmacology , Animals , Basal Ganglia/drug effects , Down-Regulation/drug effects , Down-Regulation/physiology , Epilepsy/chemically induced , Epilepsy/metabolism , Kindling, Neurologic/drug effects , Male , Mice , Mice, Inbred BALB C , Pentylenetetrazole/toxicity , Protein Binding/drug effects , Protein Binding/physiology , Receptors, Dopamine D1/biosynthesis , Receptors, Dopamine D2/biosynthesis
17.
Neurosci Lett ; 357(2): 83-6, 2004 Mar 04.
Article in English | MEDLINE | ID: mdl-15036580

ABSTRACT

In this study we evaluated oxidative stress (lipid peroxidation and protein oxidation) and thiol redox state [TRS: glutathione (GSH), glutathione disulfide (GSSG), cysteine (CSH), protein (P) thiols (PSH) and protein and non-protein (NP) mixed/symmetric disulfides (PSSR, NPSSR, NPSSC, PSSP)] in hippocampus after pentylenetetrazol (PTZ) administration at convulsive and subconvulsive dose. The significant decrease in PSH, CSH and NPSSC, as well as the increase in PSSP, NPSSR, lipid peroxidation and protein oxidation levels after PTZ-induced seizure indicate increased oxidative damage in hippocampus, although the levels of GSH and GSSG do not change significantly.


Subject(s)
Epilepsy/chemically induced , Hippocampus/drug effects , Oxidative Stress/drug effects , Pentylenetetrazole/toxicity , Sulfhydryl Compounds/metabolism , Animals , Epilepsy/metabolism , Hippocampus/metabolism , Male , Mice , Mice, Inbred BALB C , Oxidation-Reduction/drug effects , Oxidative Stress/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...