Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 828: 154176, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35245556

ABSTRACT

Effluents from ten full-scale municipal wastewater treatment plants (WWTPs) that discharge into the Hudson River, surface waters, and wild-caught fish samples were analyzed using liquid chromatography with tandem mass spectrometry (LC/MS/MS) to examine the influence of wastewater discharge on the concentrations of contaminants of emerging concern (CECs) and their ecological impacts on fish. Analysis was based on targeted detection of 41 pharmaceuticals, and non-targeted analysis (suspect screening) of CECs. Biological effects of treated WWTP effluents were assessed using a larval zebrafish (Danio rerio) swimming behavior assay. Concentrations of residues in surface waters were determined in grab samples and polar organic chemical integrative samplers (POCIS). In addition, vitellogenin peptides, used as biomarkers of endocrine disruption, were quantified using LC/MS/MS in the wild-caught fish plasma samples. Overall, 94 chemical residues were identified, including 63 pharmaceuticals, 10 industrial chemicals, and 21 pesticides. Eight targeted pharmaceuticals were detected in 100% of effluent samples with median detections of: bupropion (194 ng/L), carbamazepine (91 ng/L), ciprofloxacin (190 ng/L), citalopram (172 ng/L), desvenlafaxine (667 ng/L), iopamidol (3790 ng/L), primidone (86 ng/L), and venlafaxine (231 ng/L). Over 30 chemical residues were detected in wild-caught fish tissues. Notably, zebrafish larvae exposed to chemical extracts of effluents from 9 of 10 WWTPs, in at least one season, were significantly hyperactive. Vitellogenin expression in male or immature fish occurred 2.8 times more frequently in fish collected from the Hudson River as compared to a reference site receiving no direct effluent input. Due to the low concentrations of pharmaceuticals detected in effluents, it is likely that chemicals other than pharmaceuticals measured are responsible for the behavioral changes observed. The combined use of POCIS and non-target analysis demonstrated significant increase in the chemical coverage for CEC detection, providing a better insight on the impacts of WWTP effluents and agricultural practices on surface water quality.


Subject(s)
Wastewater , Water Pollutants, Chemical , Animals , Environmental Monitoring/methods , Male , Organic Chemicals , Pharmaceutical Preparations , Rivers/chemistry , Tandem Mass Spectrometry , Vitellogenins , Wastewater/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Zebrafish
2.
Front Microbiol ; 12: 657954, 2021.
Article in English | MEDLINE | ID: mdl-34054755

ABSTRACT

Wastewater treatment plants (WWTPs) receive a confluence of sewage containing antimicrobials, antibiotic resistant bacteria, antibiotic resistance genes (ARGs), and pathogens and thus are a key point of interest for antibiotic resistance surveillance. WWTP monitoring has the potential to inform with respect to the antibiotic resistance status of the community served as well as the potential for ARGs to escape treatment. However, there is lack of agreement regarding suitable sampling frequencies and monitoring targets to facilitate comparison within and among individual WWTPs. The objective of this study was to comprehensively evaluate patterns in metagenomic-derived indicators of antibiotic resistance through various stages of treatment at a conventional WWTP for the purpose of informing local monitoring approaches that are also informative for global comparison. Relative abundance of total ARGs decreased by ∼50% from the influent to the effluent, with each sampling location defined by a unique resistome (i.e., total ARG) composition. However, 90% of the ARGs found in the effluent were also detected in the influent, while the effluent ARG-pathogen taxonomic linkage patterns identified in assembled metagenomes were more similar to patterns in regional clinical surveillance data than the patterns identified in the influent. Analysis of core and discriminatory resistomes and general ARG trends across the eight sampling events (i.e., tendency to be removed, increase, decrease, or be found in the effluent only), along with quantification of ARGs of clinical concern, aided in identifying candidate ARGs for surveillance. Relative resistome risk characterization further provided a comprehensive metric for predicting the relative mobility of ARGs and likelihood of being carried in pathogens and can help to prioritize where to focus future monitoring and mitigation. Most antibiotics that were subject to regional resistance testing were also found in the WWTP, with the total antibiotic load decreasing by ∼40-50%, but no strong correlations were found between antibiotics and corresponding ARGs. Overall, this study provides insight into how metagenomic data can be collected and analyzed for surveillance of antibiotic resistance at WWTPs, suggesting that effluent is a beneficial monitoring point with relevance both to the local clinical condition and for assessing efficacy of wastewater treatment in reducing risk of disseminating antibiotic resistance.

3.
J Hazard Mater ; 414: 125369, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33647625

ABSTRACT

Suspect screening using liquid chromatography with high resolution mass spectrometry provides an opportunity for expanding the detection coverage of emerging contaminants in the environment. Screening workflows may suffer from high frequency of false positives or insufficient confidence in the identification of compounds; however, stringent criteria could lead to high false negatives. A workflow must have a balanced criteria, both selective and sensitive, to be able to identify real features without missing low abundant features traceable to analytes of interest. A highly selective (87%) and sensitive (97%) workflow was developed by characterizing the occurrence of contaminants in wastewater and surface water from Hong Kong, India, Philippines, Sweden, Switzerland, and the U.S. Sixty-eight contaminants were identified and confirmed with reference standards, including pharmaceuticals, pesticides, and industrial chemicals. The antimicrobials metronidazole, clindamycin, linezolid, and rifaximin were detected. Notably, antifungal compounds were detected in samples from six countries, with levels up to 1380 ng/L. Amoxicillin transformation products, penilloic acid (285-8047 ng/L) and penicilloic acid (107 ng/L), were confirmed for the first time with reference standards in wastewater samples from India, Sweden, and U.S. This workflow provides an efficient approach to broad-scale identification of emerging contaminants using publicly-available databases for suspect screening and prioritization.

4.
Sci Total Environ ; 712: 136285, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-31927441

ABSTRACT

Densely populated countries in Asia, such as Bangladesh, are considered to be major contributors to the increased occurrence of global antimicrobial resistance (AMR). Several factors make low-and middle-income countries vulnerable to increased emergence and spread of AMR in the environment including limited regulations on antimicrobial drug use, high volume of antimicrobials used in human medicine and agricultural production, and poor wastewater management. Previous monitoring campaigns to investigate the presence of antibiotics in the aquatic environment have employed targeted analysis in which selected antibiotics are measured using liquid chromatography with tandem mass spectrometry (LC/MS/MS). However, this approach can miss several important contaminants that can contribute to the selective pressure that promotes maintenance and dissemination of antibiotic resistance genes (ARGs) in the environment. Nontarget analysis by suspect screening and reanalysis of stored digital data of previously ran samples can provide information on analytes that were formerly uncharacterized and may be chemicals of emerging concern (CECs). In this study, surface waters in both urban and rural sites in Bangladesh were collected and analyzed for the presence of antibiotic residues and other pharmaceuticals. Utilizing targeted analysis, the antibiotics with the highest concentrations detected were ciprofloxacin (1407 ng/L) and clarithromycin (909 ng/L). In addition, using high-resolution LC/MS/MS in the first ever application of retrospective analysis in samples from Bangladesh, additional antibiotics clindamycin, lincomycin, linezolid, metronidazole, moxifloxacin, nalidixic acid, and sulfapyridine were detected. Prevalence of amoxicillin transformation products in surface waters was also confirmed. In addition, medicinal and agricultural antifungal compounds were frequently found in Bangladeshi surface waters. This later finding - the near ubiquity of antifungal agents in environmental samples - is of particular concern, as it may be contributing to the alarming rise of multi-drug resistant fungal (e.g. Candida auris) disease recently seen in humans throughout the world.


Subject(s)
Water Pollutants, Chemical/chemistry , Anti-Bacterial Agents , Antifungal Agents , Bangladesh , Environmental Monitoring , Humans , Retrospective Studies , Tandem Mass Spectrometry
5.
Environ Int ; 124: 361-369, 2019 03.
Article in English | MEDLINE | ID: mdl-30660849

ABSTRACT

Antimicrobial resistance is a worldwide problem that is both pressing and challenging due to the rate at which it is spreading, and the lack of understanding of the mechanisms that link human, animal and environmental sources contributing to its proliferation. One knowledge gap that requires immediate attention is the significance of antimicrobial residues and other pharmaceuticals that are being discharged from wastewater treatment plants (WWTPs) on the dissemination of antimicrobial resistance in the environment. In this work we provide an approach to develop a harmonized analytical method for 8 classes of antimicrobials and other pharmaceuticals that can be used for global monitoring in wastewater and receiving waters. Analysis of these trace organic chemicals in the influent and effluent wastewater, and in the respective upstream and downstream receiving waters from different countries across the globe is not trivial. Here, we demonstrated that sample preparation using solid-phase extraction (SPE) not only provides a convenient and cost-effective shipping of samples, but also adds stability to the analytes during international shipping. It is important that SPE cartridges are maintained at cold temperature during shipment if the duration is longer than 7 days because a significant decrease in recoveries were observed after 7 days in the cartridges stored at room temperature, especially for sulfonamides and tetracyclines. To compensate for sample degradation during shipment, and matrix effects in liquid chromatography/mass spectrometry, the use of stable isotope labeled compounds should be employed when available and affordable. The importance of applying a defined tolerance for the ion ratios (Q/q) that have been optimized for wastewater and surface water is discussed. The tolerance range was set to be the mean Q/q of the analyte standard at various concentrations ±40% for the influent, and ±30% for the effluent, upstream, and downstream samples; for tetracyclines and quinolones, however, the tolerance range was ±80% in order to minimize false negative and false positive detection. The optimized procedures were employed to reveal differences in antimicrobial and pharmaceutical concentrations in influent, effluent, and surface water samples from Hong Kong, India, Philippines, Sweden, Switzerland, and United States. The antimicrobials with the highest concentrations in influent and effluent samples were ciprofloxacin (48,103 ng/L, Hong Kong WWTP 1) and clarithromycin (5178 ng/L, India WWTP 2), respectively. On the other hand, diclofenac (108,000 ng/L, Sweden WWTP 2), caffeine (67,000 ng/L, India WWTP 1), and acetaminophen (28,000 ng/L, India WWTP 1) were the highest detected pharmaceuticals in the receiving surface water samples. Hong Kong showed the highest total antimicrobial concentrations that included macrolides, quinolones, and sulfonamides with concentrations reaching 60,000 ng/L levels in the influent. Antidepressants were predominant in Sweden, Switzerland, and the United States.


Subject(s)
Anti-Infective Agents/analysis , Environmental Monitoring , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Supply , Chromatography, Liquid , Environmental Monitoring/methods , Hong Kong , India , Philippines , Solid Phase Extraction , Sweden , Switzerland , Tandem Mass Spectrometry/methods , Water Cycle
6.
J Anal Methods Chem ; 2018: 7019204, 2018.
Article in English | MEDLINE | ID: mdl-29967712

ABSTRACT

The occurrence of antibiotics in the environment from discharges of wastewater treatment plants (WWTPs) and from the land application of antibiotic-laden manure from animal agriculture is a critical global issue because these residues have been associated with the increased emergence of antibiotic resistance in the environment. In addition, other classes of pharmaceuticals and personal care products (PPCPs) have been found in effluents of municipal WWTPs, many of which persist in the receiving environments. Analysis of antibiotics by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in samples from different countries presents unique challenges that should be considered, from ion suppression due to matrix effects, to lack of available stable isotopically labeled standards for accurate quantification. Understanding the caveats of LC-MS/MS is important for assessing samples with varying matrix complexity. Ion ratios between quantifying and qualifying ions have been used for quality assurance purposes; however, there is limited information regarding the significance of setting criteria for acceptable variabilities in their values in the literature. Upon investigation of 30 pharmaceuticals in WWTP influent and effluent samples, and in receiving surface water samples downstream and upstream of the WWTP, it was found that ion ratios have higher variabilities at lower concentrations in highly complex matrices, and the extent of variability may be exacerbated by the physicochemical properties of the analytes. In setting the acceptable ion ratio criterion, the overall mean, which was obtained by taking the average of the ion ratios at all concentrations (1.56 to 100 ppb), was used. Then, for many of the target analytes included in this study, the tolerance range was set at 40% for WWTP influent samples and 30% for WWTP effluent, upstream, and downstream samples. A separate tolerance range of 80% was set for tetracyclines and quinolones, which showed higher variations in the ion ratios compared to the other analytes.

SELECTION OF CITATIONS
SEARCH DETAIL
...