Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Neurotrauma Rep ; 5(1): 277-292, 2024.
Article in English | MEDLINE | ID: mdl-38515546

ABSTRACT

Activity-based training and lumbosacral spinal cord epidural stimulation (scES) have the potential to restore standing and walking with self-balance assistance after motor complete spinal cord injury (SCI). However, improvements in upright postural control have not previously been addressed in this population. Here, we implemented a novel robotic postural training with scES, performed with free hands, to restore upright postural control in individuals with chronic, cervical (n = 5) or high-thoracic (n = 1) motor complete SCI, who had previously undergone stand training with scES using a walker or a standing frame for self-balance assistance. Robotic postural training re-enabled and/or largely improved the participants' ability to control steady standing, self-initiated trunk movements and upper limb reaching movements while standing with free hands, receiving only external assistance for pelvic control. These improvements were associated with neuromuscular activation pattern adaptations above and below the lesion. These findings suggest that the human spinal cord below the level of injury can generate meaningful postural responses when its excitability is modulated by scES, and can learn to improve these responses. Upright postural control improvements can enhance functional motor recovery promoted by scES after severe SCI.

2.
J Neurotrauma ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38009201

ABSTRACT

Spinal cord epidural stimulation can promote the recovery of motor function in individuals with severe spinal cord injury (SCI) by enabling the spinal circuitry to interpret sensory information and generate related neuromuscular responses. This approach enables the spinal cord to generate lower limb extension patterns during weight bearing, allowing individuals with SCI to achieve upright standing. We have shown that the human spinal cord can generate some standing postural responses during self-initiated body weight shifting. In this study, we investigated the ability of individuals with motor complete SCI receiving epidural stimulation to generate standing reactive postural responses after external perturbations were applied at the trunk. A cable-driven robotic device was used to provide constant assistance for pelvic control and to deliver precise trunk perturbations while participants used their hands to grasp onto handlebars for self-balance support (hands-on) as well as when participants were without support (free-hands). Five individuals with motor complete SCI receiving lumbosacral spinal cord epidural stimulation parameters specific for standing (Stand-scES) participated in this study. Trunk perturbations (average magnitude: 17 ± 3% body weight) were delivered randomly in the four cardinal directions. Participants attempted to control each perturbation such that upright standing was maintained and no additional external assistance was needed. Lower limb postural responses were generally more frequent, larger in magnitude, and appropriately modulated during the free-hands condition. This was associated with trunk displacement and lower limb loading modulation that were larger in the free-hands condition. Further, we observed discernible lower limb muscle synergies that were similar between the two perturbed standing conditions. These findings suggest that the human spinal circuitry involved in postural control retains the ability to generate meaningful lower limb postural responses after SCI when its excitability is properly modulated. Moreover, lower limb postural responses appear enhanced by a standing environment without upper limb stabilization that promotes afferent inputs associated with a larger modulation of ground reaction forces and trunk kinematics. These findings should be considered when developing future experimental frameworks aimed at studying upright postural control and activity-based recovery training protocols aimed at promoting neural plasticity and sensory-motor recovery.

3.
Bioengineering (Basel) ; 10(9)2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37760167

ABSTRACT

Cervical spinal cord injury (SCI) leads to impaired trunk motor control, negatively impacting the performance of activities of daily living in the affected individuals. Improved trunk control with better sitting posture has been previously observed due to neuromuscular electrical stimulation and transcutaneous spinal stimulation, while improved postural stability has been observed with spinal cord epidural stimulation (scES). Hence, we studied how trunk-specific scES impacts sitting independence and posture. Fourteen individuals with chronic, severe cervical SCI with an implanted neurostimulator performed a 5-min tall-sit task without and with trunk-specific scES. Spine posture was assessed by placing markers on five spine levels and evaluating vertical spine inclination angles. Duration of trunk manual assistance was used to assess independence along with the number of independence changes and average independence score across those changes. With scES, the sacrum-L1 inclination and number of independence changes tended to decrease by 1.64 ± 3.16° (p = 0.07; Cohen's d = 0.53) and 9.86 ± 16.8 (p = 0.047; Cohen's d = 0.59), respectively. Additionally, for the participants who had poor sitting independence without scES, level of independence tended to increase by 12.91% [0%, 31.52%] (p = 0.38; Cohen's d = 0.96) when scES was present. Hence, trunk-specific scES promoted improvements in lower spine posture and lower levels of trunk assistance.

4.
Front Bioeng Biotechnol ; 11: 1073716, 2023.
Article in English | MEDLINE | ID: mdl-36815892

ABSTRACT

Introduction: Lumbosacral spinal cord neuromodulation has shown the ability to restore voluntary control and stepping in individuals with chronic spinal cord injury. Methods: We combined cervical transcutaneous and lumbar epidural stimulation to explore the brain-spinal connectomes and their influence in spinal excitability and interlimb coupling. Four individuals with a prior implanted lumbosacral spinal cord epidural stimulator participated in the study. We assessed lower extremity muscle activity and kinematics during intentional stepping in both non-weight bearing and weight-bearing environments. Results: Our results showed an inhibition of motor evoked potentials generated by spinal cord epidural stimulation when cervical transcutaneous stimulation is applied. In contrast, when intentional stepping is performed in a non-weight bearing setting, range of motion, motor output amplitude, and coordination are improved when cervical transcutaneous and lumbar epidural stimulations are combined. Similarly, with both stimulations applied, coordination is improved and motor output variability is decreased when intentional stepping is performed on a treadmill with body weight support. Discussion: Combined transcutaneous cervical and epidural lumbar stimulation demonstrated an improvement of voluntary control of stepping in individuals with chronic motor complete paralysis. The immediate functional improvement promoted by the combination of cervical and lumbar stimulation adds to the body of evidence for increasing spinal excitability and improvement of function that is possible in individuals with chronic paralysis.

5.
Front Neurosci ; 16: 1041015, 2022.
Article in English | MEDLINE | ID: mdl-36570830

ABSTRACT

Introduction: Previous studies support modular organization of locomotor circuitry contributing to the activation of muscles in a spatially and temporally organized manner during locomotion. Human spinal circuitry may reorganize after spinal cord injury; however, it is unclear if reorganization of spinal circuitry post-injury affects the modular organization. Here we characterize the modular synergy organization of locomotor muscle activity expressed during assisted stepping in subjects with complete and incomplete spinal cord injury (SCI) of varying chronicity, before any explicit training regimen. We also investigated whether the synergy characteristics changed in two subjects who achieved independent walking after training with spinal cord epidural stimulation. Methods: To capture synergy structures during stepping, individuals with SCI were stepped on a body-weight supported treadmill with manual facilitation, while electromyography (EMGs) were recorded from bilateral leg muscles. EMGs were analyzed using non-negative matrix factorization (NMF) and independent component analysis (ICA) to identify synergy patterns. Synergy patterns from the SCI subjects were compared across different clinical characteristics and to non-disabled subjects (NDs). Results: Results for both NMF and ICA indicated that the subjects with SCI were similar among themselves, but expressed a greater variability in the number of synergies for criterion variance capture compared to NDs, and weaker correlation to NDs. ICA yielded a greater number of muscle synergies than NMF. Further, the clinical characteristics of SCI subjects and chronicity did not predict any significant differences in the spatial synergy structures despite any neuroplastic changes. Further, post-training synergies did not become closer to ND synergies in two individuals. Discussion: These findings suggest fundamental differences between motor modules expressed in SCIs and NDs, as well as a striking level of spatial and temporal synergy stability in motor modules in the SCI population, absent the application of specific interventions.

6.
Exp Brain Res ; 240(1): 279-288, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34854934

ABSTRACT

Spinal cord epidural stimulation (scES) is an intervention to restore motor function in those with severe spinal cord injury (SCI). Spinal cord lesion characteristics assessed via magnetic resonance imaging (MRI) may contribute to understand motor recovery. This study assessed relationships between standing ability with scES and spared spinal cord tissue characteristics at the lesion site. We hypothesized that the amount of lateral spared cord tissue would be related to independent extension in the ipsilateral lower limb. Eleven individuals with chronic, clinically motor complete SCI underwent spinal cord MRI, and were subsequently implanted with scES. Standing ability and lower limb activation patterns were assessed during an overground standing experiment with scES. This assessment occurred prior to any activity-based intervention with scES. Lesion hyperintensity was segmented from T2 axial images, and template-based analysis was used to estimate spared tissue in anterior, posterior, right, and left spinal cord regions. Regression analysis was used to assess relationships between imaging and standing outcomes. Total volume of spared tissue was related to left (p = 0.007), right (p = 0.005), and bilateral (p = 0.011) lower limb extension. Spared tissue in the left cord region was related to left lower limb extension (p = 0.019). A positive trend (p = 0.138) was also observed between right spared cord tissue and right lower limb extension. In this study, MRI measures of spared spinal cord tissue were significantly related to standing outcomes with scES. These preliminary results warrant future investigation of roles of supraspinal input and MRI-detected spared spinal cord tissue on lower limb motor responsiveness to scES.


Subject(s)
Spinal Cord Injuries , Spinal Cord Stimulation , Epidural Space/diagnostic imaging , Humans , Spinal Cord/diagnostic imaging , Spinal Cord Injuries/diagnostic imaging , Spinal Cord Injuries/therapy , Standing Position
7.
J Appl Physiol (1985) ; 131(3): 1100-1110, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34382840

ABSTRACT

Spinal cord epidural stimulation (scES) combined with activity-based training can promote motor function recovery in individuals with motor complete spinal cord injury (SCI). The characteristics of motor neuron recruitment, which influence different aspects of motor control, are still unknown when motor function is promoted by scES. Here, we enrolled five individuals with chronic motor complete SCI implanted with an scES unit to study the recruitment order of motor neurons during standing enabled by scES. We recorded high-density electromyography (HD-EMG) signals on the vastus lateralis muscle and inferred the order of recruitment of motor neurons from the relation between amplitude and conduction velocity of the scES-evoked EMG responses along the muscle fibers. Conduction velocity of scES-evoked responses was modulated over time, whereas stimulation parameters and standing condition remained constant, with average values ranging between 3.0 ± 0.1 and 4.4 ± 0.3 m/s. We found that the human spinal circuitry receiving epidural stimulation can promote both orderly (according to motor neuron size) and inverse trends of motor neuron recruitment, and that the engagement of spinal networks promoting rhythmic activity may favor orderly recruitment trends. Conversely, the different recruitment trends did not appear to be related with time since injury or scES implant, nor to the ability to achieve independent knees extension, nor to the conduction velocity values. The proposed approach can be implemented to investigate the effects of stimulation parameters and training-induced neural plasticity on the characteristics of motor neuron recruitment order, contributing to improve mechanistic understanding and effectiveness of epidural stimulation-promoted motor recovery after SCI.NEW & NOTEWORTHY After motor complete spinal cord injury, the human spinal cord receiving epidural stimulation can promote both orderly and inverse trends of motor neuron recruitment. The engagement of spinal networks involved in the generation of rhythmic activity seems to favor orderly recruitment trends.


Subject(s)
Spinal Cord Injuries , Spinal Cord Stimulation , Electromyography , Epidural Space , Humans , Motor Neurons , Spinal Cord
10.
Front Syst Neurosci ; 14: 559313, 2020.
Article in English | MEDLINE | ID: mdl-33192348

ABSTRACT

Previous studies have shown that epidural stimulation of the lumbosacral spinal cord (scES) can re-enable lower limb volitional motor control in individuals with chronic, clinically motor complete spinal cord injury (SCI). This observation entails that residual supraspinal connectivity to the lumbosacral spinal circuitry still persisted after SCI, although it was non-detectable when scES was not provided. In the present study, we aimed at exploring further the mechanisms underlying scES-promoted recovery of volitional lower limb motor control by investigating neuroimaging markers at the spinal cord lesion site via magnetic resonance imaging (MRI). Spinal cord MRI was collected prior to epidural stimulator implantation in 13 individuals with chronic, clinically motor complete SCI, and the spared tissue of specific regions of the spinal cord (anterior, posterior, right, left, and total cord) was assessed. After epidural stimulator implantation, and prior to any training, volitional motor control was evaluated during left and right lower limb flexion and ankle dorsiflexion attempts. The ability to generate force exertion and movement was not correlated to any neuroimaging marker. On the other hand, spared tissue of specific cord regions significantly and importantly correlated with some aspects of motor control that include activation amplitude of antagonist (negative correlation) muscles during left ankle dorsiflexion, and electromyographic coordination patterns during right lower limb flexion. The fact that amount and location of spared spinal cord tissue at the lesion site were not related to the ability to generate volitional lower limb movements may suggest that supraspinal inputs through spared spinal cord regions that differ across individuals can result in the generation of lower limb volitional motor output prior to any training when epidural stimulation is provided.

11.
Front Syst Neurosci ; 14: 571011, 2020.
Article in English | MEDLINE | ID: mdl-33177997

ABSTRACT

In individuals with severe spinal cord injury (SCI), the autonomic nervous system (ANS) is affected leading to cardiovascular deficits, which include significant blood pressure instability, with the prevalence of systemic hypotension and orthostatic intolerance resulting in an increased risk of stroke. Additionally, persons with SCI rostral to thoracic vertebral level 5 (T5), where sympathetic nervous system fibers exit the spinal cord and innervate the immune system, have clinically significant systemic inflammation and increased infection risk. Our recent studies show that lumbosacral spinal cord epidural stimulation (scES), applied at the lumbosacral level using targeted configurations that promote cardiovascular stability (CV-scES), can safely and effectively normalize blood pressure in persons with chronic SCI. Herein we present a case report in a female (age 27 years) with chronic clinically motor complete cervical SCI demonstrating that 97-sessions of CV-scES, which increased systemic blood pressure, improved orthostatic tolerance in association with increased cerebral blood flow velocity in the middle cerebral artery, also promoted positive immunological changes in whole-blood gene expression. Specifically, there was evidence of the down-regulation of inflammatory pathways and the up-regulation of adaptative immune pathways. The findings of this case report suggest that the autonomic effects of epidural stimulation, targeted to promote cardiovascular homeostasis, also improves immune system function, which has a significant benefit to long-term cardiovascular and immunologic health in individuals with long-standing SCI. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT02307565.

12.
Sci Rep ; 9(1): 14474, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31597924

ABSTRACT

The appropriate selection of individual-specific spinal cord epidural stimulation (scES) parameters is crucial to re-enable independent standing with self-assistance for balance in individuals with chronic, motor complete spinal cord injury, which is a key achievement toward the recovery of functional mobility. To date, there are no available algorithms that contribute to the selection of scES parameters for facilitating standing in this population. Here, we introduce a novel framework for EMG data processing that implements spectral analysis by continuous wavelet transform and machine learning methods for characterizing epidural stimulation-promoted EMG activity resulting in independent standing. Analysis of standing data collected from eleven motor complete research participants revealed that independent standing was promoted by EMG activity characterized by lower median frequency, lower variability of median frequency, lower variability of activation pattern, lower variability of instantaneous maximum power, and higher total power. Additionally, the high classification accuracy of assisted and independent standing allowed the development of a prediction algorithm that can provide feedback on the effectiveness of muscle-specific activation for standing promoted by the tested scES parameters. This framework can support researchers and clinicians during the process of selection of epidural stimulation parameters for standing motor rehabilitation.


Subject(s)
Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/rehabilitation , Spinal Cord Stimulation/methods , Adult , Algorithms , Electrodes, Implanted , Electromyography/statistics & numerical data , Epidural Space , Female , Fourier Analysis , Humans , Machine Learning , Male , Muscle, Skeletal/physiopathology , Range of Motion, Articular/physiology , Spinal Cord Stimulation/statistics & numerical data , Standing Position , Wavelet Analysis , Young Adult
13.
Phys Med Rehabil Clin N Am ; 30(2): 337-354, 2019 05.
Article in English | MEDLINE | ID: mdl-30954151

ABSTRACT

Spinal cord epidural stimulation (scES) combined with activity-based training can promote lower limb motor function recovery in chronic, motor complete spinal cord-injured individuals. Task- and individual-specific scES parameters modulate the excitability of human spinal circuitry so that sensory information and residual descending input can serve as sources of control for generating motor patterns appropriate for standing, stepping, and volitionally moving the lower limb. Task-specific activity-based training with scES is crucial for promoting neural plasticity and motor function improvement. Future studies with more individuals and advanced stimulation technology are needed to better understand the recovery potential in this population.


Subject(s)
Neurological Rehabilitation , Spinal Cord Injuries/rehabilitation , Spinal Cord Stimulation , Humans , Lower Extremity/physiopathology , Neurological Rehabilitation/methods , Spinal Cord Injuries/physiopathology , Spinal Cord Stimulation/methods
14.
J Spinal Cord Med ; 42(1): 32-38, 2019 01.
Article in English | MEDLINE | ID: mdl-29537940

ABSTRACT

CONTEXT: Four individuals with motor complete SCI with an implanted epidural stimulator who were enrolled in another study were assessed for cardiovascular fitness, metabolic function and body composition at four time points before, during, and after task specific training. Following 80 locomotor training sessions, a 16-electrode array was surgically placed on the dura (L1-S1 cord segments) to allow for electrical stimulation. After implantation individuals received 160 sessions of task specific training with epidural stimulation (stand and step). OUTCOME MEASURES: Dual-energy X-ray absorptiometry (DXA), resting metabolic rate and peak oxygen consumption (VO2peak) were measured before locomotor training, after locomotor training but before epidural stimulator implant, at mid-locomotor training with spinal cord epidural stimulation (scES) and after locomotor training with scES. FINDINGS: Participants showed increases in lean body mass with decreases on percentage of body fat, particularly android body fat, and android/gynoid ratio from baseline to post training; resting metabolic rate and VO2peak also show increases that are of clinical relevance in this population. CONCLUSIONS: Task specific training combined with epidural stimulation has the potential to show improvements in cardiovascular fitness and body composition in individuals with cervical or upper thoracic motor complete SCI.


Subject(s)
Body Composition , Exercise Therapy/methods , Locomotion , Spinal Cord Injuries/rehabilitation , Spinal Cord Stimulation/methods , Adult , Cervical Vertebrae/injuries , Epidural Space/physiopathology , Humans , Male , Oxygen Consumption , Thoracic Vertebrae/injuries
15.
N Engl J Med ; 379(13): 1244-1250, 2018 09 27.
Article in English | MEDLINE | ID: mdl-30247091

ABSTRACT

Persons with motor complete spinal cord injury, signifying no voluntary movement or sphincter function below the level of injury but including retention of some sensation, do not recover independent walking. We tested intense locomotor treadmill training with weight support and simultaneous spinal cord epidural stimulation in four patients 2.5 to 3.3 years after traumatic spinal injury and after failure to improve with locomotor training alone. Two patients, one with damage to the mid-cervical region and one with damage to the high-thoracic region, achieved over-ground walking (not on a treadmill) after 278 sessions of epidural stimulation and gait training over a period of 85 weeks and 81 sessions over a period of 15 weeks, respectively, and all four achieved independent standing and trunk stability. One patient had a hip fracture during training. (Funded by the Leona M. and Harry B. Helmsley Charitable Trust and others; ClinicalTrials.gov number, NCT02339233 .).


Subject(s)
Exercise Therapy , Recovery of Function , Spinal Cord Injuries/rehabilitation , Spinal Cord Stimulation , Walking , Adult , Chronic Disease , Electrodes, Implanted , Epidural Space , Humans , Locomotion , Male
17.
Front Physiol ; 9: 565, 2018.
Article in English | MEDLINE | ID: mdl-29867586

ABSTRACT

Disruption of motor and autonomic pathways induced by spinal cord injury (SCI) often leads to persistent low arterial blood pressure and orthostatic intolerance. Spinal cord epidural stimulation (scES) has been shown to enable independent standing and voluntary movement in individuals with clinically motor complete SCI. In this study, we addressed whether scES configured to activate motor lumbosacral networks can also modulate arterial blood pressure by assessing continuous, beat-by-beat blood pressure and lower extremity electromyography during supine and standing in seven individuals with C5-T4 SCI. In three research participants with arterial hypotension, orthostatic intolerance, and low levels of circulating catecholamines (group 1), scES applied while supine and standing resulted in increased arterial blood pressure. In four research participants without evidence of arterial hypotension or orthostatic intolerance and normative circulating catecholamines (group 2), scES did not induce significant increases in arterial blood pressure. During scES, there were no significant differences in electromyographic (EMG) activity between group 1 and group 2. In group 1, during standing assisted by scES, blood pressure was maintained at 119/72 ± 7/14 mmHg (mean ± SD) compared with 70/45 ± 5/7 mmHg without scES. In group 2 there were no arterial blood pressure changes during standing with or without scES. These findings demonstrate that scES configured to facilitate motor function can acutely increase arterial blood pressure in individuals with SCI-induced cardiovascular deficits.

18.
Front Hum Neurosci ; 12: 83, 2018.
Article in English | MEDLINE | ID: mdl-29568266

ABSTRACT

Chronic low blood pressure and orthostatic hypotension remain challenging clinical issues after severe spinal cord injury (SCI), affecting health, rehabilitation, and quality of life. We previously reported that targeted lumbosacral spinal cord epidural stimulation (scES) could promote stand and step functions and restore voluntary movement in patients with chronic motor complete SCI. This study addresses the effects of targeted scES for cardiovascular function (CV-scES) in individuals with severe SCI who suffer from chronic hypotension. We tested the hypothesis that CV-scES can increase resting blood pressure and attenuate chronic hypotension in individuals with chronic cervical SCI. Four research participants with chronic cervical SCI received an implant of a 16-electrode array on the dura (L1-S1 cord segments, T11-L1 vertebrae). Individual-specific CV-scES configurations (anode and cathode electrode selection, voltage, frequency, and pulse width) were identified to maintain systolic blood pressure within targeted normative ranges without skeletal muscle activity of the lower extremities as assessed by electromyography. These individuals completed five 2-h sessions using CV-scES in an upright, seated position during measurement of blood pressure and heart rate. Noninvasive continuous blood pressure was measured from a finger cuff by plethysmograph technique. For each research participant there were statistically significant increases in mean arterial pressure in response to CV-scES that was maintained within normative ranges. This result was reproducible over the five sessions with concomitant decreases or no changes in heart rate using individual-specific CV-scES that was modulated with modest amplitude changes throughout the session. Our study shows that stimulating dorsal lumbosacral spinal cord can effectively and safely activate mechanisms to elevate blood pressures to normal ranges from a chronic hypotensive state in humans with severe SCI with individual-specific CV-scES.

19.
PLoS One ; 13(1): e0190998, 2018.
Article in English | MEDLINE | ID: mdl-29385166

ABSTRACT

OBJECTIVE: Locomotor training (LT) as a therapeutic intervention following spinal cord injury (SCI) is an effective rehabilitation strategy for improving motor outcomes, but its impact on non-locomotor functions is unknown. Given recent results of our labs' pre-clinical animal SCI LT studies and existing overlap of lumbosacral spinal circuitries controlling pelvic-visceral and locomotor functions, we addressed whether LT can improve bladder, bowel and sexual function in humans at chronic SCI time-points (> two years post-injury). STUDY DESIGN: Prospective cohort study; pilot trial with small sample size. METHODS: Eight SCI research participants who were undergoing 80 daily one-hour sessions of LT on a treadmill using body-weight support, or one-hour of LT and stand training on alternate days, as part of another research study conducted at the Kentucky Spinal Cord Injury Research Center, University of Louisville, were enrolled in this pilot trial. Urodynamic assessments were performed and International Data Set questionnaire forms completed for bladder, bowel and sexual functions at pre-and post-training time points. Four usual care (non-trained; regular at-home routine) research participants were also enrolled in this study and had the same assessments collected twice, at least 3 months apart. RESULTS: Filling cystometry documented significant increases in bladder capacity, voiding efficiency and detrusor contraction time as well as significant decreases in voiding pressure post-training relative to baseline. Questionnaires revealed a decrease in the frequency of nocturia and urinary incontinence for several research participants as well as a significant decrease in time required for defecation and a significant increase in sexual desire post-training. No significant differences were found for usual care research participants. CONCLUSIONS: These results suggest that an appropriate level of sensory information provided to the spinal cord, generated through task-specific stepping and/or loading, can positively benefit the neural circuitries controlling urogenital and bowel functions. TRIAL REGISTRATION: ClinicalTrials.gov NCT03036527.


Subject(s)
Colon/physiopathology , Locomotion , Sexuality , Spinal Cord Injuries/rehabilitation , Urinary Bladder/physiopathology , Adult , Female , Humans , Male , Prospective Studies , Recovery of Function , Spinal Cord Injuries/physiopathology , Surveys and Questionnaires , Young Adult
20.
Sci Rep ; 7(1): 13476, 2017 10 26.
Article in English | MEDLINE | ID: mdl-29074997

ABSTRACT

The prognosis for recovery of motor function in motor complete spinal cord injured (SCI) individuals is poor. Our research team has demonstrated that lumbosacral spinal cord epidural stimulation (scES) and activity-based training can progressively promote the recovery of volitional leg movements and standing in individuals with chronic clinically complete SCI. However, scES was required to perform these motor tasks. Herein, we show the progressive recovery of voluntary leg movement and standing without scES in an individual with chronic, motor complete SCI throughout 3.7 years of activity-based interventions utilizing scES configurations customized for the different motor tasks that were specifically trained (standing, stepping, volitional leg movement). In particular, this report details the ongoing neural adaptations that allowed a functional progression from no volitional muscle activation to a refined, task-specific activation pattern and movement generation during volitional attempts without scES. Similarly, we observed the re-emergence of muscle activation patterns sufficient for standing with independent knee and hip extension. These findings highlight the recovery potential of the human nervous system after chronic clinically motor complete SCI.


Subject(s)
Movement , Neurological Rehabilitation/methods , Paraplegia/therapy , Spinal Cord Injuries/therapy , Spinal Cord Stimulation/methods , Adult , Electrodes, Implanted , Epidural Space/surgery , Humans , Leg/physiopathology , Male , Muscle Contraction , Muscle, Skeletal/innervation , Muscle, Skeletal/physiopathology , Neurological Rehabilitation/instrumentation , Paraplegia/rehabilitation , Spinal Cord Injuries/rehabilitation , Spinal Cord Stimulation/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...