Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 7(9): 2505-15, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25045112

ABSTRACT

Silica-magnesia (Si/Mg=1:1) catalysts were studied in the one-pot conversion of ethanol to butadiene. The catalyst synthesis method was found to greatly influence morphology and performance, with materials prepared through wet-kneading performing best both in terms of ethanol conversion and butadiene yield. Detailed characterization of the catalysts synthesized through co-precipitation or wet-kneading allowed correlation of activity and selectivity with morphology, textural properties, crystallinity, and acidity/basicity. The higher yields achieved with the wet-kneaded catalysts were attributed to a morphology consisting of SiO2 spheres embedded in a thin layer of MgO. The particle size of the SiO2 catalysts also influenced performance, with catalysts with smaller SiO2 spheres showing higher activity. Temperature-programmed desorption (TPD) measurements showed that best butadiene yields were obtained with SiO2-MgO catalysts characterized by an intermediate amount of acidic and basic sites. A Hammett indicator study showed the catalysts' pK(a) value to be inversely correlated with the amount of dehydration by-products formed. Butadiene yields could be further improved by the addition of 1 wt% of CuO as promoter to give butadiene yields and selectivities as high as 40% and 53%, respectively. The copper promoter boosts the production of the acetaldehyde intermediate changing the rate-determining step of the process. TEM-energy-dispersive X-ray (EDX) analyses showed CuO to be present on both the SiO2 and MgO components. UV/Vis spectra of promoted catalysts in turn pointed at the presence of cluster-like CuO species, which are proposed to be responsible for the increased butadiene production.


Subject(s)
Butadienes/chemistry , Copper/chemistry , Ethanol/chemistry , Magnesium Oxide/chemistry , Silicon Dioxide/chemistry , Catalysis
2.
ChemSusChem ; 6(9): 1595-614, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23703747

ABSTRACT

The development of new and improved processes for the synthesis of bio-based chemicals is one of the scientific challenges of our time. These new discoveries are not only important from an environmental point of view, but also represent an important economic opportunity, provided that the developed processes are selective and efficient. Bioethanol is currently produced from renewable resources in large amounts and, in addition to its use as biofuel, holds considerable promise as a building block for the chemical industry. Indeed, further improvements in production, both in terms of efficiency and feedstock selection, will guarantee availability at competitive prices. The conversion of bioethanol into commodity chemicals, in particular direct 'drop-in' replacements is, therefore, becoming increasingly attractive, provided that the appropriate (catalytic) technology is in place. The production of green and renewable 1,3-butadiene is a clear example of this approach. The Lebedev process for the one-step catalytic conversion of ethanol to butadiene has been known since the 1930s and has been applied on an industrial scale to produce synthetic rubber. Later, the availability of low-cost oil made it more convenient to obtain butadiene from petrochemical sources. The desire to produce bulk chemicals in a sustainable way and the availability of low-cost bioethanol in large volumes has, however, resulted in a renaissance of this old butadiene production process. This paper reviews the catalytic aspects associated with the synthesis of butadiene via the Lebedev process, as well as the production of other, mechanistically related bulk chemicals that can be obtained from (bio)ethanol.


Subject(s)
Butadienes/chemistry , Ethanol/chemistry , Biofuels , Catalysis
3.
J Org Chem ; 75(11): 3908-11, 2010 Jun 04.
Article in English | MEDLINE | ID: mdl-20462265

ABSTRACT

An efficient and highly sustainable Ullmann-type homocoupling of bromo- and chloroarenes, including the more challenging electron-rich chloroarenes (e.g., 4-chloroanisole), catalyzed by in situ generated Pd colloids, is carried out in aqueous medium under relatively mild conditions (temperatures ranging from 40 to 90 degrees C). Glucose is used as a clean and renewable reductant, while tetrabutylammonium hydroxide (TBAOH) acts as base, surfactant, and phase-transfer agent, creating a favorable environment for the catalyst. Pd nanoparticle sizes, morphology, and chemical composition are ascertained by TEM and XPS analyses.


Subject(s)
Glucose/chemistry , Hydrocarbons, Brominated/chemistry , Hydrocarbons, Chlorinated/chemistry , Palladium/chemistry , Reducing Agents/chemistry , Catalysis , Nanoparticles/chemistry , Quaternary Ammonium Compounds , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...