Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 4(22): 19582-19594, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31788588

ABSTRACT

Trypanosoma cruzi, a flagellate protozoan parasite, is responsible for Chagas disease. The parasite major cysteine protease, cruzain (Cz), plays a vital role at every stage of its life cycle and the active-site region of the enzyme, similar to those of other members of the papain superfamily, is well characterized. Taking advantage of structural information available in public databases about Cz bound to known covalent inhibitors, along with their corresponding activity annotations, in this work, we performed a deep analysis of the molecular interactions at the Cz binding cleft, in order to investigate the enzyme inhibition mechanism. Our toolbox for performing this study consisted of the charge density topological analysis of the complexes to extract the molecular interactions and machine learning classification models to relate the interactions with biological activity. More precisely, such a combination was useful for the classification of molecular interactions as "active-like" or "inactive-like" according to whether they are prevalent in the most active or less active complexes, respectively. Further analysis of interactions with the help of unsupervised learning tools also allowed the understanding of how these interactions come into play together to trigger the enzyme into a particular conformational state. Most active inhibitors induce some conformational changes within the enzyme that lead to an overall better fit of the inhibitor into the binding cleft. Curiously, some of these conformational changes can be considered as a hallmark of the substrate recognition event, which means that most active inhibitors are likely recognized by the enzyme as if they were its own substrate so that the catalytic machinery is arranged as if it is about to break the substrate scissile bond. Overall, these results contribute to a better understanding of the enzyme inhibition mechanism. Moreover, the information about main interactions extracted through this work is already being used in our lab to guide docking solutions in ongoing prospective virtual screening campaigns to search for novel noncovalent cruzain inhibitors.

2.
J Mol Model ; 23(9): 273, 2017 Sep 02.
Article in English | MEDLINE | ID: mdl-28866777

ABSTRACT

A series of tetrahydroisoquinolines functionalized with carbamates is reported here as highly selective ligands on the dopamine D2 receptor. These compounds were selected by means of a molecular modeling study. The studies were carried out in three stages: first an exploratory study was carried out using combined docking techniques and molecular dynamics simulations. According to these results, the bioassays were performed; these experimental studies corroborated the results obtained by molecular modeling. In the last stage of our study, a QTAIM analysis was performed in order to determine the main molecular interactions that stabilize the different ligand-receptor complexes. Our results show that the adequate use of combined simple techniques is a very useful tool to predict the potential affinity of new ligands at dopamine D1 and D2 receptors. In turn the QTAIM studies show that they are very useful to evaluate in detail the molecular interactions that stabilize the different ligand-receptor complexes; such information is crucial for the design of new ligands.


Subject(s)
Carbamates/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Receptors, Dopamine D1/agonists , Receptors, Dopamine D2/agonists , Tetrahydroisoquinolines/pharmacology , Humans , Ligands , Receptors, Dopamine D1/antagonists & inhibitors
3.
J Mol Model ; 20(11): 2510, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25367044

ABSTRACT

This work examined the local topological parameters of charge density at the hydrogen bond (H-bond) critical points of a set of substituted formamide cyclic dimers and enolic tautomers. The analysis was performed not only on the total electron density of the hydrogen bonded complexes but also on the intermediate electron density differences derived from the Morokuma energy decomposition scheme. Through the connection between these intermediate electron density differences and the corresponding differences in topological parameters, the meaning of topological parameters variation due to hydrogen bonding (H-bonding) becomes evident. Thus, for example, we show in a plausible way that the potential energy density differences at the H-bond critical point properly describe the electrostatics of H-bonding, and local kinetic energy density differences account for the localization/delocalization degree of the electrons at that point. The results also support the idea that the total electronic energy density differences at the H-bond critical point describe the strength of the interaction rather than its covalent character as is commonly considered.


Subject(s)
Computer Simulation , Formamides/chemistry , Models, Chemical , Models, Molecular , Dimerization , Electrons , Energy Transfer , Hydrogen Bonding , Isomerism , Molecular Structure , Static Electricity , Structure-Activity Relationship
4.
J Mol Model ; 19(5): 2097-106, 2013 May.
Article in English | MEDLINE | ID: mdl-23187685

ABSTRACT

In this work, halogen bonding (XB) and hydrogen bonding (HB) complexes were studied with the aim of analyzing the variation of the total electronic energy density H(r b ) with the interaction strengthening. The calculations were performed at the MP2/6-311++G(2d,2p) level of approximation. To explain the nature of such interactions, the atoms in molecules theory (AIM) in conjunction with reduced variational space self-consistent field (RVS) energy decomposition analysis were carried out. Based on the local virial theorem, an equation to decompose the total electronic energy density H(r b ) in two energy densities, (-G(r b )) and 1/4∇(2)ρ(r b ), was derived. These energy densities were linked with the RVS interaction energy components. Through the connection between both decomposition schemes, it was possible to conclude that the decrease in H(r b ) with the interaction strengthening observed in the HB as well as the XB complexes, is mainly due to the increase in the attractive electrostatic part of the interaction energy and in lesser extent to the increase in its covalent character, as is commonly considered.


Subject(s)
Electrons , Halogens/chemistry , Hydrogen/chemistry , Hydrogen Bonding , Kinetics , Quantum Theory , Static Electricity , Thermodynamics
5.
J Phys Chem A ; 115(18): 4701-10, 2011 May 12.
Article in English | MEDLINE | ID: mdl-21506592

ABSTRACT

In this work, mono- and di-hydrated complexes of the formamide were studied. The calculations were performed at the MP2/6-311++G(d,p) level of approximation. The atoms in molecules theory (AIM), based on the topological properties of the electronic density distribution, was used to characterize the different types of bonds. The analysis of the hydrogen bonds (H-bonds) in the most stable mono- and di-hydrated formamide complexes shows a mutual reinforcement of the interactions, and some of these complexes can be considered as "bifunctional hydrogen bonding hydration complexes". In addition, we analyzed how the strength and the nature of the interactions, in mono-hydrated complexes, are modified by the presence of a second water molecule in di-hydrated formamide complexes. Structural changes, cooperativity, and electron density redistributions demonstrate that the H-bonds are stronger in the di-hydrated complexes than in the corresponding mono-hydrated complexes, wherein the σ- and π-electron delocalization were found. To explain the nature of such interactions, we carried out the atoms in molecules theory in conjunction with reduced variational space self-consistent field (RVS) decomposition analysis. On the basis of the local Virial theorem, the characteristics of the local electron energy density components at the bond critical points (BCPs) (the 1/4∇ (2)ρ(b) component of electron energy density and the kinetic energy density) were analyzed. These parameters were used in conjunction with the electron density and the Laplacian of the electron density to analyze the characteristics of the interactions. The analysis of the interaction energy components for the systems considered indicates that the strengthening of the hydrogen bonds is manifested by an increased contribution of the electrostatic energy component represented by the kinetic energy density at the BCP.


Subject(s)
Formamides/chemistry , Hydrogen Bonding , Molecular Structure , Quantum Theory , Water/chemistry
6.
J Phys Chem A ; 114(8): 2855-63, 2010 Mar 04.
Article in English | MEDLINE | ID: mdl-20136161

ABSTRACT

In this work, the cooperative effects implicated in bifunctional hydrogen bonds (H-bonds) were studied (in monohydrated six-membered cycloether) within the framework of the atoms in molecules (AIM) theory and of the natural bond orbitals (NBO) analysis. The study was carried out in complexes formed by six-membered cycloether compounds (tetrahydropyrane, 1,4-dioxane, and 1,3-dioxane) and a water molecule. These compounds were used as model systems instead of more complicated molecules of biological importance. All the results were obtained at the second-order Møller-Plesset (MP2) level theory using a 6-311++G(d,p) basis set. Attention was focused on the indicators of the cooperative effects that arise when a water molecule interacts simultaneously with a polar and a nonpolar portion of a six-membered cycloether (via bifunctional hydrogen bonds) and compared with conventional H-bonds where the water molecule only interacts with the polar portion of the cycloether. Different indicators of H-bonds strength, such as structural and spectroscopic data, electron charge density, population analysis, hyperconjugation energy and charge transference, consistently showed significant cooperative effects in bifunctional H-bonds. From the AIM, as well as from the NBO analysis, the obtained results allowed us to state that in the monohydrated six-membered cycloether, where the water molecule plays a dual role, as proton acceptor and proton donor, a mutual reinforcement of the two interactions occurs. Because of this feature, the complexes engaged by bifunctional hydrogen bonds are more stabilized than the complexes linked by conventional hydrogen bonds.

SELECTION OF CITATIONS
SEARCH DETAIL
...