Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Mass Spectrom ; 50(12): 1409-19, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26634976

ABSTRACT

This manuscript describes the direct detection of mesteroloe sulfo-conjugated metabolites by liquid chromatography/quadrupole/time of flight mass spectrometry (LC/Q/TOFMS) with special focus on evaluation of their retrospective detectability and their structure elucidation. A comparison of their long-term detectability, with the mesterolone main metabolite (1α-methyl-5α-androstan-3α-ol-17-one) excreted in glucuronide fraction and detected by gas chromatography/high resolution mass spectrometry (GC/HRMS), is also presented. Studies on mesterolone were performed with samples obtained from two excretion studies after single oral administration of Proviron© by healthy volunteers. Potential sulfate metabolites were detected in post administration samples after liquid-liquid extraction (LLE) with ethyl acetate and LC/TOFMS analysis, in negative mode. Twelve mesterolone sulfate metabolites from the first excretion study and nine from the second were subsequently confirmed by LC/Q/TOFMS. Finally, six mesterolone sulfate metabolites were considered important taking into account their abundance and long-term detectability, encoded as M1, M2, M4, M5, M6 and M7. The proposed mesterolone sulfate metabolites M1, M2, M4 and M5 (excreted as sulfates) have the same retrospectivity with the main mesterolone metabolite, excreted in glucuronide fraction. For metabolite characterization, LC fractionation was performed. The metabolites were identified and characterized by GC/MS, after solvolysis and derivatization. Combined mass spectra data from trimethyl-silyl (TMS), TMS-enolTMS and methoxime-TMS derivatives were taken into account for the characterization of these metabolites. It was concluded that M1 is 1α-methyl-5α-androstan-3ß-ol-17 one, M2 is 1α-methyl-5α-androstan-3α-ol-17 one, M4 is 1α-methyl-5a-androstan-3ß, 16z-diol-17-one, M5 is 1α-methyl-5α-androstan-17z,4ξ-diol-3one, M6 is 1α-methyl-5α-androstan-3z,6z-diol-17-one and M7 is 4z-hydroxy-1α-methyl-5α-androstan-3,17-dione.

2.
J Mass Spectrom ; 50(5): 740-8, 2015 May.
Article in English | MEDLINE | ID: mdl-26259657

ABSTRACT

Methenolone (17ß-hydroxy-1-methyl-5α-androst-1-en-3-one) misuse in doping control is commonly detected by monitoring the parent molecule and its metabolite (1-methylene-5α-androstan-3α-ol-17-one) excreted conjugated with glucuronic acid using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography mass spectrometry (LC-MS) for the parent molecule, after hydrolysis with ß-glucuronidase. The aim of the present study was the evaluation of the sulfate fraction of methenolone metabolism by LC-high resolution (HR)MS and the estimation of the long-term detectability of its sulfate metabolites analyzed by liquid chromatography tandem mass spectrometry (LC-HRMSMS) compared with the current practice for the detection of methenolone misuse used by the anti-doping laboratories. Methenolone was administered to two healthy male volunteers, and urine samples were collected up to 12 and 26 days, respectively. Ethyl acetate extraction at weak alkaline pH was performed and then the sulfate conjugates were analyzed by LC-HRMS using electrospray ionization in negative mode searching for [M-H](-) ions corresponding to potential sulfate structures (comprising structure alterations such as hydroxylations, oxidations, reductions and combinations of them). Eight sulfate metabolites were finally detected, but four of them were considered important as the most abundant and long term detectable. LC clean up followed by solvolysis and GC/MS analysis of trimethylsilylated (TMS) derivatives reveal that the sulfate analogs of methenolone as well as of 1-methylene-5α-androstan-3α-ol-17-one, 3z-hydroxy-1ß-methyl-5α-androstan-17-one and 16ß-hydroxy-1-methyl-5α-androst-1-ene-3,17-dione were the major metabolites in the sulfate fraction. The results of the present study also document for the first time the methenolone sulfate as well as the 3z-hydroxy-1ß-methyl-5α-androstan-17-one sulfate as metabolites of methenolone in human urine. The time window for the detectability of methenolone sulfate metabolites by LC-HRMS is comparable with that of their hydrolyzed glucuronide analogs analyzed by GC-MS. The results of the study demonstrate the importance of sulfation as a phase II metabolic pathway for methenolone metabolism, proposing four metabolites as significant components of the sulfate fraction.


Subject(s)
Doping in Sports , Gas Chromatography-Mass Spectrometry/methods , Glucuronides/urine , Methenolone/urine , Sulfates/urine , Adult , Chromatography, Liquid/methods , Glucuronides/chemistry , Glucuronides/metabolism , Humans , Male , Methenolone/chemistry , Methenolone/metabolism , Middle Aged , Sulfates/chemistry , Sulfates/metabolism
3.
J Chromatogr A ; 1256: 232-9, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22901297

ABSTRACT

The comparison among different modelling techniques, such as multiple linear regression, partial least squares and artificial neural networks, has been performed in order to construct and evaluate models for prediction of gas chromatographic relative retention times of trimethylsilylated anabolic androgenic steroids. The performance of the quantitative structure-retention relationship study, using the multiple linear regression and partial least squares techniques, has been previously conducted. In the present study, artificial neural networks models were constructed and used for the prediction of relative retention times of anabolic androgenic steroids, while their efficiency is compared with that of the models derived from the multiple linear regression and partial least squares techniques. For overall ranking of the models, a novel procedure [Trends Anal. Chem. 29 (2010) 101-109] based on sum of ranking differences was applied, which permits the best model to be selected. The suggested models are considered useful for the estimation of relative retention times of designer steroids for which no analytical data are available.


Subject(s)
Anabolic Agents/analysis , Chromatography, Gas/methods , Neural Networks, Computer , Steroids/analysis , Trimethylsilyl Compounds/chemistry , Least-Squares Analysis
4.
Bioanalysis ; 4(2): 167-75, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22250799

ABSTRACT

BACKGROUND: Two-step derivatization procedures were developed for the enhancement of the positive ESI in LC-MS detection of anabolic androgenic steroids, a class of prohibited substances with limited ionization efficiency in atmospheric pressure interfaces. The developed procedures are based on the esterification of hydroxyl groups of anabolic steroids with picolinic acid, followed by conversion of carbonyl groups to Schiff bases by either Girard's reagent T or 2-hydrazino pyridin. RESULTS: Ionization efficiency for the model derivatized compounds 19-norandrosterone (nandrolone main metabolite) and methasterone was higher by almost two orders of magnitude compared with the respective efficiency of the underivatized compounds. CONCLUSION: The obtained derivatives provided a significant improvement in the ESI sensitivity, compared with those of underivatized molecules in positive LC-ESI-ion trap-MS full-scan mode.


Subject(s)
Anabolic Agents/urine , Chromatography, Liquid/methods , Doping in Sports/prevention & control , Spectrometry, Mass, Electrospray Ionization/methods , Substance Abuse Detection/methods , Anabolic Agents/chemistry , Female , Humans , Male
5.
Rapid Commun Mass Spectrom ; 24(11): 1595-609, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20486255

ABSTRACT

Unification of the screening protocols for a wide range of doping agents has become an important issue for doping control laboratories. This study presents the development and validation of a generic liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) screening method of 241 small molecule analytes from various categories of prohibited substances (stimulants, narcotics, diuretics, beta(2)-agonists, beta-blockers, hormone antagonists and modulators, glucocorticosteroids and anabolic agents). It is based on a single-step liquid-liquid extraction of hydrolyzed urine and the use of a rapid-resolution liquid chromatography/high-resolution time-of-flight mass spectrometric system acquiring continuous full scan data. Electrospray ionization in the positive mode was used. Validation parameters consisted of identification capability, limit of detection, specificity, ion suppression, extraction recovery, repeatability and mass accuracy. Detection criteria were established on the basis of retention time reproducibility and mass accuracy. The suitability of the methodology for doping control was demonstrated with positive urine samples. The preventive role of the method was proved by the case where full scan acquisition with accurate mass measurement allowed the retrospective reprocessing of acquired data from past doping control samples for the detection of a designer drug, the stimulant 4-methyl-2-hexanamine, which resulted in re-reporting a number of stored samples as positives for this particular substance, when, initially, they had been reported as negatives.


Subject(s)
Anabolic Agents/urine , Chromatography, Liquid/methods , Doping in Sports/prevention & control , Mass Spectrometry/methods , Substance Abuse Detection/methods , Humans , Limit of Detection
6.
J Chromatogr A ; 1216(47): 8404-20, 2009 Nov 20.
Article in English | MEDLINE | ID: mdl-19836752

ABSTRACT

A quantitative structure-retention relationship (QSRR) study has been performed to correlate relative retention times (RRTs) of trimethylsilylated (TMS) anabolic androgenic steroids (AAS) with their molecular characteristics, encoded by the respective descriptors, for the prediction of RRTs of novel molecules, using gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). The elucidation of similarities and dissimilarities among the data structures was carried out using principal component analysis (PCA). Successful models were established using multiple linear regression (MLR) and partial least squares (PLS) techniques as a function of topological, three-dimensional (3D) and physicochemical descriptors. The models are useful for the estimation of RRTs of designer steroids for which no analytical data is available.


Subject(s)
Anabolic Agents/analysis , Androstenols/analysis , Gas Chromatography-Mass Spectrometry/methods , Designer Drugs , Doping in Sports , Least-Squares Analysis , Linear Models , Principal Component Analysis , Quantitative Structure-Activity Relationship , Trimethylsilyl Compounds/analysis
7.
J Steroid Biochem Mol Biol ; 115(1-2): 44-61, 2009 May.
Article in English | MEDLINE | ID: mdl-19429460

ABSTRACT

Unified metabolism schemes of anabolic androgenic steroids (AAS) in human urine based on structure classification of parent molecules are presented in this paper. Principal components analysis (PCA) was applied to AAS molecules referred in the World Anti-Doping Agency (WADA) list of prohibited substances, resulting to their classification into six distinct groups related to structure features where metabolic alterations usually occur. The metabolites of the steroids participating to these six groups were treated using the Excel(c) classification filters showing that common metabolism routes are derived for each of the above PCA classes, leading to the proposed metabolism schemes of the present study. This rule-based approach is proposed for the prediction of the metabolism of unknown, chemically modified steroids, otherwise named as designer steroids. The metabolites of three known, in the literature, AAS are estimated using the proposed metabolism schemes, confirming that their use could be a useful tool for the prediction of metabolic pathways of unknown AAS.


Subject(s)
Anabolic Agents/urine , Androgens/urine , Principal Component Analysis/methods , Substance Abuse Detection/methods , Anabolic Agents/metabolism , Androgens/metabolism , Designer Drugs , Doping in Sports , Humans , Metabolism , Steroids/urine
8.
Steroids ; 74(2): 172-97, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19028512

ABSTRACT

Anabolic androgenic steroids (AAS) are synthetic derivatives of testosterone introduced for therapeutic purposes providing enhanced anabolic potency with reduced androgenic effects. Androgens mediate their action through their binding to the androgen receptor (AR) which is mainly expressed in androgen target tissues, such as the prostate, skeletal muscle, liver and central nervous system. This paper reviews some of the wide spectrum of testosterone and synthetic AAS structure modifications related to the intended enhancement in anabolic activity. The structural features of steroids necessary for effective binding to the AR and those which contribute to the stipulation of the androgenic and anabolic activities are also presented.


Subject(s)
Anabolic Agents/chemistry , Anabolic Agents/metabolism , Androgens/chemistry , Androgens/metabolism , Receptors, Androgen/metabolism , Steroids/chemistry , Steroids/metabolism , Animals , Humans , Protein Binding
9.
Bioanalysis ; 1(7): 1209-24, 2009 Oct.
Article in English | MEDLINE | ID: mdl-21083047

ABSTRACT

BACKGROUND: While a number of different derivatization procedures for screening GC-MS analysis of prohibited substances are followed by doping control laboratories, a unified derivatization procedure for the GC-MS analysis of 190 different doping agents was developed. RESULTS: Following preliminary experiments, a two-step derivatization procedure was selected. The evaluation of various silylation parameters, such as reagent composition, reaction time, reaction temperature, catalysts and microwave oven reaction time, for this procedure was carried out. CONCLUSION: The suitability of the developed procedure was demonstrated through application on urine samples at concentration levels of the minimum required performance limit for all tested substances. This new derivatization procedure, which significantly decreases time and cost, is suitable for a routine basis application.


Subject(s)
Doping in Sports/methods , Gas Chromatography-Mass Spectrometry/methods , Silanes/chemistry , Substance Abuse Detection/methods , Urinalysis/methods , Doping in Sports/economics , Humans , Substance Abuse Detection/economics , Time Factors , Urinalysis/economics
SELECTION OF CITATIONS
SEARCH DETAIL
...