Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37873070

ABSTRACT

In eukaryotes, RNAs transcribed by RNA Pol II are modified at the 5' end with a 7-methylguanosine (m 7 G) cap, which is recognized by the nuclear cap binding complex (CBC). The CBC plays multiple important roles in mRNA metabolism including transcription, splicing, polyadenylation and export. It promotes mRNA export through direct interaction with ALYREF, which in turn links the TRanscription and EXport (TREX) complex to the 5' end of mRNA. However, the molecular mechanism for CBC mediated recruitment of the mRNA export machinery is not well understood. Here, we present the first structure of the CBC in complex with a mRNA export factor, ALYREF. The cryo-EM structure of CBC-ALYREF reveals that the RRM domain of ALYREF makes direct contacts with both the NCBP1 and NCBP2 subunits of the CBC. Comparison of CBC-ALYREF to other CBC and ALYREF containing cellular complexes provides insights into the coordinated events during mRNA transcription, splicing, and export.

2.
Cell Rep ; 42(8): 112988, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37578863

ABSTRACT

mRNA in eukaryotic cells is packaged into highly compacted ribonucleoprotein particles (mRNPs) in the nucleus and exported to the cytoplasm for translation. mRNP packaging and export require the evolutionarily conserved transcription-export (TREX) complex. TREX facilitates loading of various RNA-binding proteins on mRNA through the action of its DDX39B subunit. SARNP (Tho1 [transcriptional defect of Hpr1 by overexpression 1] in yeast) is shown to interact with DDX39B and affect mRNA export. The molecular mechanism of how SARNP recognizes DDX39B and functions in mRNP assembly is unclear. Here, we determine the crystal structure of a Tho1/DDX39B/RNA complex, revealing a multivalent interaction mediated by tandem DDX39B interacting motifs in SARNP/Tho1. The high-order complex of SARNP and DDX39B is evolutionarily conserved, and human SARNP can engage with five DDX39B molecules. RNA sequencing (RNA-seq) from SARNP knockdown cells shows the most affected RNAs in export are GC rich. Our work suggests the role of the high-order SARNP/DDX39B/RNA complex in mRNP assembly and export.


Subject(s)
Nuclear Proteins , Ribonucleoproteins , Humans , Nuclear Proteins/metabolism , Ribonucleoproteins/metabolism , Transcription Factors/metabolism , RNA, Messenger/metabolism , Saccharomyces cerevisiae/metabolism , DEAD-box RNA Helicases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...