Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Front Bioeng Biotechnol ; 8: 567842, 2020.
Article in English | MEDLINE | ID: mdl-33042968

ABSTRACT

Recent advances in cardiac tissue engineering have shown that human induced-pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) cultured in a three-dimensional (3D) micro-environment exhibit superior physiological characteristics compared with their two-dimensional (2D) counterparts. These 3D cultured hiPSC-CMs have been used for drug testing as well as cardiac repair applications. However, the fabrication of a cardiac scaffold with optimal biomechanical properties and high biocompatibility remains a challenge. In our study, we fabricated an aligned polycaprolactone (PCL)-Gelatin coaxial nanofiber patch using electrospinning. The structural, chemical, and mechanical properties of the patch were assessed by scanning electron microscopy (SEM), immunocytochemistry (ICC), Fourier-transform infrared spectroscopy (FTIR)-spectroscopy, and tensile testing. hiPSC-CMs were cultured on the aligned coaxial patch for 2 weeks and their viability [lactate dehydrogenase (LDH assay)], morphology (SEM, ICC), and functionality [calcium cycling, multielectrode array (MEA)] were assessed. Furthermore, particle image velocimetry (PIV) and MEA were used to evaluate the cardiotoxicity and physiological functionality of the cells in response to cardiac drugs. Nanofibers patches were comprised of highly aligned core-shell fibers with an average diameter of 578 ± 184 nm. Acellular coaxial patches were significantly stiffer than gelatin alone with an ultimate tensile strength of 0.780 ± 0.098 MPa, but exhibited gelatin-like biocompatibility. Furthermore, hiPSC-CMs cultured on the surface of these aligned coaxial patches (3D cultures) were elongated and rod-shaped with well-organized sarcomeres, as observed by the expression of cardiac troponin-T and α-sarcomeric actinin. Additionally, hiPSC-CMs cultured on these coaxial patches formed a functional syncytium evidenced by the expression of connexin-43 (Cx-43) and synchronous calcium transients. Moreover, MEA analysis showed that the hiPSC-CMs cultured on aligned patches showed an improved response to cardiac drugs like Isoproterenol (ISO), Verapamil (VER), and E4031, compared to the corresponding 2D cultures. Overall, our results demonstrated that an aligned, coaxial 3D cardiac patch can be used for culturing of hiPSC-CMs. These biomimetic cardiac patches could further be used as a potential 3D in vitro model for "clinical trials in a dish" and for in vivo cardiac repair applications for treating myocardial infarction.

2.
Front Cell Dev Biol ; 8: 130, 2020.
Article in English | MEDLINE | ID: mdl-32211408

ABSTRACT

Studies on cardiac progenitor cells (CPCs) and their derived exosomes therapeutic potential have demonstrated only modest improvements in cardiac function. Therefore, there is an unmet need to improve the therapeutic efficacy of CPCs and their exosomes to attain clinically relevant improvement in cardiac function. The hypothesis of this project is to assess the therapeutic potential of exosomes derived from human CPCs (hCPCs) cultured under normoxia (21% O2), physoxia (5% O2) and hypoxia (1% O2) conditions. hCPCs were characterized by immunostaining of CPC-specific markers (NKX-2.5, GATA-4, and c-kit). Cell proliferation and cell death assay was not altered under physoxia. A gene expression qPCR array (84 genes) was performed to assess the modulation of hypoxic genes under three different oxygen conditions as mentioned above. Our results demonstrated that very few hypoxia-related genes were modulated under physoxia (5 genes upregulated, 4 genes down regulated). However, several genes were modulated under hypoxia (23 genes upregulated, 9 genes downregulated). Furthermore, nanoparticle tracking analysis of the exosomes isolated from hCPCs under physoxia had a 1.6-fold increase in exosome yield when compared to normoxia and hypoxia conditions. Furthermore, tube formation assay for angiogenesis indicated that exosomes derived from hCPCs cultured under physoxia significantly increased tube formation as compared to no-exosome control, 21% O2, and 1% O2 groups. Overall, our study demonstrated the therapeutic potential of physoxic oxygen microenvironment cultured hCPCs and their derived exosomes for myocardial repair.

3.
Acad Emerg Med ; 27(5): 388-393, 2020 05.
Article in English | MEDLINE | ID: mdl-31778272

ABSTRACT

OBJECTIVES: Emergency departments (EDs) patient satisfaction metrics are highly valued by hospitals, health systems, and payers, yet these metrics are challenging to analyze and interpret. Accurate interpretation involves selection of the most appropriate peer group for benchmark comparisons. We hypothesized that the selection of different benchmark peer groups would yield different interpretations of Press Ganey (PG) patient satisfaction scores. METHODS: Emergency department PG summary ratings of "doctors section" and "likelihood-to-recommend" raw scores and corresponding percentiles were derived for three benchmark peer groups from three academic years (2016, 2017, and 2018). The three benchmarks are: 1) the PG Large database; 2) the PG University HealthSystem Consortium (UHC) database; and 3) the Academy of Administrators in Academic Emergency Medicine (AAAEM) database, which is composed only of EDs from academic health centers with emergency medicine residency training programs. Raw scores were converted to percentile ranks for each distribution and then compared using Welch's ANOVA and Games-Howell pairwise comparisons. RESULTS: For both patient satisfaction raw scores evaluated, the AAAEM database was noted to have significantly higher percentile ranks when compared to the PG Large and PG UHC databases. These results were consistent for all three time frames assessed. CONCLUSIONS: Benchmarking with different peer groups provides different results, with similar patient satisfaction raw scores resulting in higher percentile ranks using the AAAEM database compared to the two PG databases. The AAAEM database should be considered the most appropriate peer group for benchmarking academic EDs.


Subject(s)
Benchmarking/methods , Emergency Service, Hospital/statistics & numerical data , Patient Satisfaction/statistics & numerical data , Databases, Factual , Emergency Medicine/organization & administration , Humans , Surveys and Questionnaires
4.
Sci Rep ; 9(1): 13188, 2019 Sep 12.
Article in English | MEDLINE | ID: mdl-31515494

ABSTRACT

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been developed for cardiac cell transplantation studies more than a decade ago. In order to establish the hiPSC-CM-based platform as an autologous source for cardiac repair and drug toxicity, it is vital to understand the functionality of cardiomyocytes. Therefore, the goal of this study was to assess functional physiology, ultrastructural morphology, gene expression, and microRNA (miRNA) profiling at Wk-1, Wk-2 & Wk-4 in hiPSC-CMs in vitro. Functional assessment of hiPSC-CMs was determined by multielectrode array (MEA), Ca2+ cycling and particle image velocimetry (PIV). Results demonstrated that Wk-4 cardiomyocytes showed enhanced synchronization and maturation as compared to Wk-1 & Wk-2. Furthermore, ultrastructural morphology of Wk-4 cardiomyocytes closely mimicked the non-failing (NF) adult human heart. Additionally, modulation of cardiac genes, cell cycle genes, and pluripotency markers were analyzed by real-time PCR and compared with NF human heart. Increasing expression of fatty acid oxidation enzymes at Wk-4 supported the switching to lipid metabolism. Differential regulation of 12 miRNAs was observed in Wk-1 vs Wk-4 cardiomyocytes. Overall, this study demonstrated that Wk-4 hiPSC-CMs showed improved functional, metabolic and ultrastructural maturation, which could play a crucial role in optimizing timing for cell transplantation studies and drug screening.


Subject(s)
Cell Differentiation , Gene Expression Profiling , Induced Pluripotent Stem Cells/metabolism , MicroRNAs/biosynthesis , Myocytes, Cardiac/metabolism , Cell Line , Humans , Induced Pluripotent Stem Cells/cytology , MicroRNAs/genetics , Myocytes, Cardiac/cytology
5.
Nanomaterials (Basel) ; 9(7)2019 Jul 20.
Article in English | MEDLINE | ID: mdl-31330782

ABSTRACT

Coronary heart disease (CHD) is the leading cause of death in the Unites States and globally. The administration of growth factors to preserve cardiac function after myocardial infarction (MI) is currently being explored. Basic fibroblast growth factor (bFGF), a potent angiogenic factor has poor clinical efficacy due to its short biological half-life and low plasma stability. The goal of this study was to develop bFGF-loaded polycaprolactone (PCL) microspheres for sustained release of bFGF and to evaluate its angiogenic potential. The bFGF-PCL microspheres (bFGF-PCL-MS) were fabricated using the emulsion solvent-evaporation method and found to have spherical morphology with a mean size of 4.21 ± 1.28 µm. In vitro bFGF release studies showed a controlled release for up to 30 days. Treatment of HUVECs with bFGF-PCL-MS in vitro enhanced their cell proliferation and migration properties when compared to the untreated control group. Treatment of HUVECs with release media from bFGF-PCL-MS also significantly increased expression of angiogenic genes (bFGF and VEGFA) as compared to untreated cells. The in vivo angiogenic potential of these bFGF-PCL-MS was further confirmed in rats using a Matrigel plug assay with subsequent immunohistochemical staining showing increased expression of angiogenic markers. Overall, bFGF-PCL-MS could serve as a potential angiogenic agent to promote cell survival and angiogenesis following an acute myocardial infarction.

6.
Front Physiol ; 9: 1794, 2018.
Article in English | MEDLINE | ID: mdl-30618806

ABSTRACT

Although cell survival post-transplantation is very low, emerging evidence using stem cell therapy for myocardial repair points toward a primary role of paracrine signaling mechanisms as the basis for improved cardiac function, decreased fibrosis, and increased angiogenesis. Recent studies have demonstrated that extracellular vesicles (EVs) such as exosomes secreted by stem cells stimulate angiogenesis, provide cytoprotection, and modulate apoptosis. However, the angiogenic potential of EVs secreted from human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM), a terminally differentiated cell type, has not been elucidated yet. Therefore, the main objective of this study is to isolate, characterize, and evaluate the in vitro angiogenic potential of EVs collected from hiPSC-CM conditioned media. The hiPSC-CM were cultured for 2 weeks and EVs were isolated from cell culture medium. Isolated EVs were characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis, and immunoblotting. Furthermore, the angiogenic potential of these EVs was evaluated by tube formation, wound-healing, and cell-proliferation assays in bovine aortic endothelial cells (BAEC). In addition, gene expression levels of growth factors was evaluated in hiPSC-derived endothelial cells (hiPSC-EC) treated with hiPSC-CM-derived EV (CM-EVs) to assess their role in promoting angiogenesis. TEM imaging of CM-EVs showed a presence of a double-membrane bound structure, which is a characteristic of EV. Nanoparticle tracking analysis further confirmed the size and shape of the secreted particles to be consistent with EVs. Furthermore, EV-specific markers (CD63 and HSP70) were enriched in these particles as illustrated by immunoblotting. Most importantly, BAEC treated with 100 µg/ml of CM-EVs showed significant increases in tube formation, wound closure, and cell proliferation as compared to control (no-EVs). Finally, treatment of hiPSC-EC with CM-EVs induced increased expression of pro-angiogenic growth factors by the endothelial cells. Overall, our results demonstrated that EVs isolated from hiPSC-CM enhance angiogenesis in endothelial cells. This acellular/cell-free approach constitutes a potential translational therapeutic to induce angiogenesis in patients with myocardial infarction.

7.
Stem Cells Int ; 2017: 5785436, 2017.
Article in English | MEDLINE | ID: mdl-29163642

ABSTRACT

Stem cell transplantation therapy is a promising adjunct for regenerating damaged heart tissue; however, only modest improvements in cardiac function have been observed due to poor survival of transplanted cells in the ischemic heart. Therefore, there remains an unmet need for therapies that can aid in attenuating cardiac damage. Recent studies have demonstrated that exosomes released by stem cells could serve as a potential cell-free therapeutic for cardiac repair. These exosomes/nanoshuttles, once thought to be merely a method of waste disposal, have been shown to play a crucial role in physiological functions including short- and long-distance intercellular communication. In this review, we have summarized studies demonstrating the potential role of exosomes in improving cardiac function, attenuating cardiac fibrosis, stimulating angiogenesis, and modulating miRNA expression. Furthermore, exosomes carry an important cargo of miRNAs and proteins that could play an important role as a diagnostic marker for cardiovascular disease post-myocardial infarction. Although there is promising evidence from preclinical studies that exosomes released by stem cells could serve as a potential cell-free therapeutic for myocardial repair, there are several challenges that need to be addressed before exosomes could be fully utilized as off-the-shelf therapeutics for cardiac repair.

8.
Front Cardiovasc Med ; 4: 22, 2017.
Article in English | MEDLINE | ID: mdl-28484701

ABSTRACT

Mitogen-activated protein kinases (MAPKs) signaling cascades regulate several cellular functions, including differentiation, proliferation, survival, and apoptosis. The duration and magnitude of phosphorylation of these MAPKs are decisive determinants of their physiological functions. Dual-specificity phosphatases exert kinetic control over these signaling cascades. Previously, we demonstrated that DUSP4-/- hearts sustain a larger infarct and have poor functional recovery, when isolated hearts were subjected to ischemia/reperfusion. Uncontrolled p38 activation and upregulation of Nox4 expression are the main effectors for this functional alteration. Here, dual-specificity phosphatase 4 (DUSP4) overexpression in endothelial cells was used to investigate the role of DUSP4 on the modulation of reactive oxygen species (ROS) generation and vascular function, when cells were subjected to hypoxia/reoxygenation (H/R) insult. Immunostaining with cleaved caspase-3 revealed that DUSP4 overexpression prevents caspase-3 activation and apoptosis after H/R. The beneficial effects occur via modulating p38 activity, increased NO bioavailability, and reduced oxidative stress. More importantly, DUSP4 overexpression upregulates eNOS protein expression (1.62 ± 0.33 versus 0.65 ± 0.16) during H/R-induced stress. NO is a critical small molecule involved in regulating vascular tone, vascular growth, platelet aggregation, and modulation of inflammation. The level of NO generation determined using DAF-2 fluorescence demonstrated that DUSP4 overexpression augments NO production and thus improves vascular function. The level of superoxide generated from cells after being subjected to H/R was determined using dihydroethidium-HPLC method. The results suggested that DUSP4 overexpression in cells decreases H/R-induced superoxide generation (1.56 ± 0.14 versus 1.19 ± 0.05) and thus reduces oxidant stress. This also correlates with the reduction in the total protein S-glutathionylation, an indicator of protein oxidation. These results further support our hypothesis that DUSP4 is an antioxidant gene and a key phosphatase in modulating MAPKs, especially p38, during oxidative stress, which regulates ROS generation and eNOS expression and thus protects against oxidant-induced injury or apoptosis. Overall, DUSP4 may serve as an excellent molecular target for the treatment of ischemic heart disease.

9.
Life Sci ; 153: 124-31, 2016 May 15.
Article in English | MEDLINE | ID: mdl-27091653

ABSTRACT

Heart disease represents the leading cause of death among Americans. There is currently no clinical treatment to regenerate viable myocardium following myocardial infarction, and patients may suffer progressive deterioration and decreased myocardial function from the effects of remodeling of the necrotic myocardium. New therapeutic strategies hold promise for patients who suffer from ischemic heart disease by directly addressing the restoration of functional myocardium following death of cardiomyocytes. Therapeutic stem cell transplantation has shown modest benefit in clinical human trials with decreased fibrosis and increased functional myocardium. Moreover, autologous transplantation holds the potential to implement these therapies while avoiding the immunomodulation concerns of heart transplantation. Despite these benefits, stem cell therapy has been characterized by poor survival and low engraftment of injected stem cells. The hypoxic tissue environment of the ischemic/infracting myocardium impedes stem cell survival and engraftment in myocardial tissue. Hypoxic preconditioning has been suggested as a viable strategy to increase hypoxic tolerance of stem cells. A number of in vivo and in vitro studies have demonstrated improved stem cell viability by altering stem cell secretion of protein signals and up-regulation of numerous paracrine signaling pathways that affect inflammatory, survival, and angiogenic signaling pathways. This review will discuss both the mechanisms of hypoxic preconditioning as well as the effects of hypoxic preconditioning in different cell and animal models, examining the pitfalls in current research and the next steps into potentially implementing this methodology in clinical research trials.


Subject(s)
Cell Survival , Myocardium/cytology , Oxygen/metabolism , Stem Cells/cytology , Animals , Humans
11.
Free Radic Biol Med ; 89: 170-81, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26184564

ABSTRACT

Over-activation of p38 is implicated in many cardiovascular diseases (CVDs), including myocardial infarction, hypertrophy, heart failure, and ischemic heart disease. Numerous therapeutic interventions for CVDs have been directed toward the inhibition of the p38 mitogen-activated protein kinase activation that contributes to the detrimental effect after ischemia/reperfusion (I/R) injuries. However, the efficacy of these treatments is far from ideal, as they lack specificity and are associated with high toxicity. Previously, we demonstrated that N-acetyl cysteine (NAC) pretreatment up-regulates DUSP4 expression in endothelial cells, regulating p38 and ERK1/2 activities, and thus providing a protective effect against oxidative stress. Here, endothelial cells under hypoxia/reoxygenation (H/R) insult and isolated heart I/R injury were used to investigate the role of DUSP4 in the modulation of the p38 pathway. In rat endothelial cells, DUSP4 is time-dependently degraded by H/R (0.25 ± 0.07-fold change of control after 2h H/R). Its degradation is closely associated with hyperphosphorylation of p38 (2.1 ± 0.36-fold change) and cell apoptosis, as indicated by the increase in cells immunopositive for cleaved caspase-3 (12.59 ± 3.38%) or TUNEL labeling (29.46 ± 3.75%). The inhibition of p38 kinase activity with 20 µM SB203580 during H/R prevents H/R-induced apoptosis, assessed via TUNEL (12.99 ± 1.89%). Conversely, DUSP4 gene silencing in endothelial cells augments their sensitivity to H/R-induced apoptosis (45.81 ± 5.23%). This sensitivity is diminished via the inhibition of p38 activity (total apoptotic cells drop to 17.47 ± 1.45%). Interestingly, DUSP4 gene silencing contributes to the increase in superoxide generation from cells. Isolated Langendorff-perfused mouse hearts were subjected to global I/R injury. DUSP4(-/-) hearts had significantly larger infarct size than WT. The increase in I/R-induced infarct in DUSP4(-/-) mice significantly correlates with reduced functional recovery (assessed by RPP%, LVDP%, HR%, and dP/dtmax) as well as lower CF% and a higher initial LVEDP. From immunoblotting analysis, it is evident that p38 is significantly overactivated in DUSP4(-/-) mice after I/R injury. The activation of cleaved caspase-3 is seen in both WT and DUSP4(-/-) I/R hearts. Infusion of a p38 inhibitor prior to ischemia and during the reperfusion improves both WT and DUSP4(-/-) cardiac function. Therefore, the identification of p38 kinase modulation by DUSP4 provides a novel therapeutic target for oxidant-induced diseases, especially myocardial infarction.


Subject(s)
Aorta/physiology , Endothelium, Vascular/physiology , Heart/physiopathology , Myocardial Ischemia/physiopathology , Oxidative Stress , Protein Tyrosine Phosphatases/physiology , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Aorta/cytology , Apoptosis , Blotting, Western , Cell Proliferation , Cells, Cultured , Endothelium, Vascular/cytology , Gene Expression Regulation , Immunoenzyme Techniques , Mice , Mice, Knockout , Myocardial Reperfusion Injury/physiopathology , Phosphorylation , RNA, Messenger/genetics , Rats , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , p38 Mitogen-Activated Protein Kinases/genetics
12.
PLoS One ; 10(5): e0126338, 2015.
Article in English | MEDLINE | ID: mdl-25993466

ABSTRACT

INTRODUCTION: Dilated cardiomyopathy is a major cause of progressive heart failure. Utilization of stem cell therapy offers a potential means of regenerating viable cardiac tissue. However, a major obstacle to stem cell therapy is the delivery and survival of implanted stem cells in the ischemic heart. To address this issue, we have developed a biomimetic aligned nanofibrous cardiac patch and characterized the alignment and function of human inducible pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) cultured on this cardiac patch. This hiPSC-CMs seeded patch was compared with hiPSC-CMs cultured on standard flat cell culture plates. METHODS: hiPSC-CMs were cultured on; 1) a highly aligned polylactide-co-glycolide (PLGA) nanofiber scaffold (~50 microns thick) and 2) on a standard flat culture plate. Scanning electron microscopy (SEM) was used to determine alignment of PLGA nanofibers and orientation of the cells on the respective surfaces. Analysis of gap junctions (Connexin-43) was performed by confocal imaging in both the groups. Calcium cycling and patch-clamp technique were performed to measure calcium transients and electrical coupling properties of cardiomyocytes. RESULTS: SEM demonstrated >90% alignment of the nanofibers in the patch which is similar to the extracellular matrix of decellularized rat myocardium. Confocal imaging of the cardiomyocytes demonstrated symmetrical alignment in the same direction on the aligned nanofiber patch in sharp contrast to the random appearance of cardiomyocytes cultured on a tissue culture plate. The hiPSC-CMs cultured on aligned nanofiber cardiac patches showed more efficient calcium cycling compared with cells cultured on standard flat surface culture plates. Quantification of mRNA with qRT-PCR confirmed that these cardiomyocytes expressed α-actinin, troponin-T and connexin-43 in-vitro. CONCLUSIONS: Overall, our results demonstrated changes in morphology and function of human induced pluripotent derived cardiomyocytes cultured in an anisotropic environment created by an aligned nanofiber patch. In this environment, these cells better approximate normal cardiac tissue compared with cells cultured on flat surface and can serve as the basis for bioengineering of an implantable cardiac patch.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/cytology , Nanofibers , Action Potentials , Calcium/metabolism , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/metabolism , Microscopy, Confocal , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Myocytes, Cardiac/metabolism , Tissue Scaffolds
13.
J Cardiovasc Pharmacol ; 65(3): 241-51, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25658461

ABSTRACT

: Cardiovascular disease is the number 1 cause of morbidity and mortality in the United States. The most common manifestation of cardiovascular disease is myocardial infarction (MI), which can ultimately lead to congestive heart failure. Cell therapy (cardiomyoplasty) is a new potential therapeutic treatment alternative for the damaged heart. Recent preclinical and clinical studies have shown that mesenchymal stem cells (MSCs) are a promising cell type for cardiomyoplasty applications. However, a major limitation is the poor survival rate of transplanted stem cells in the infarcted heart. miR-133a is an abundantly expressed microRNA (miRNA) in the cardiac muscle and is downregulated in patients with MI. We hypothesized that reprogramming MSCs using miRNA mimics (double-stranded oligonucleotides) will improve survival of stem cells in the damaged heart. MSCs were transfected with miR-133a mimic and antagomirs, and the levels of miR-133a were measured by quantitative real-time polymerase chain reaction. Rat hearts were subjected to MI and MSCs transfected with miR-133a mimic or antagomir were implanted in the ischemic hearts. Four weeks after MI, cardiac function, cardiac fibrosis, miR-133a levels, and apoptosis-related genes (Apaf-1, Caspase-9, and Caspase-3) were measured in the heart. We found that transfecting MSCs with miR-133a mimic improves survival of MSCs as determined by the MTT assay. Similarly, transplantation of miR-133a mimic transfected MSCs in rat hearts subjected to MI led to a significant increase in cell engraftment, cardiac function, and decreased fibrosis when compared with MSCs only or MI groups. At the molecular level, quantitative real-time polymerase chain reaction data demonstrated a significant decrease in expression of the proapoptotic genes; Apaf-1, caspase-9, and caspase-3 in the miR-133a mimic transplanted group. Furthermore, luciferase reporter assay confirmed that miR-133a is a direct target for Apaf-1. Overall, bioengineering of stem cells through miRNAs manipulation could potentially improve the therapeutic outcome of patients undergoing stem cell transplantation for MI.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , Myocardial Infarction/surgery , Myocardium/metabolism , Tissue Engineering/methods , Animals , Apoptosis , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Cell Survival , Cells, Cultured , Disease Models, Animal , Fibrosis , Gene Expression Regulation , Graft Survival , MicroRNAs/genetics , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardium/pathology , Oligonucleotides/genetics , Oligonucleotides/metabolism , Rats, Inbred F344 , Recovery of Function , Regeneration , Stroke Volume , Time Factors , Transfection
14.
PLoS One ; 9(12): e116281, 2014.
Article in English | MEDLINE | ID: mdl-25551230

ABSTRACT

INTRODUCTION: Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have recently been shown to express key cardiac proteins and improve in vivo cardiac function when administered following myocardial infarction. However, the efficacy of hiPSC-derived cell therapies, in direct comparison to current, well-established stem cell-based therapies, is yet to be elucidated. The goal of the current study was to compare the therapeutic efficacy of human mesenchymal stem cells (hMSCs) with hiPSC-CMs in mitigating myocardial infarction (MI). METHODS: Male athymic nude hyrats were subjected to permanent ligation of the left-anterior-descending (LAD) coronary artery to induce acute MI. Four experimental groups were studied: 1) control (non-MI), 2) MI, 3) hMSCs (MI+MSC), and 4) hiPSC-CMs (MI+hiPSC-derived cardiomyocytes). The hiPSC-CMs and hMSCs were labeled with superparamagnetic iron oxide (SPIO) in vitro to track the transplanted cells in the ischemic heart by high-field cardiac MRI. These cells were injected into the ischemic heart 30-min after LAD ligation. Four-weeks after MI, cardiac MRI was performed to track the transplanted cells in the infarct heart. Additionally, echocardiography (M-mode) was performed to evaluate the cardiac function. Immunohistological and western blot studies were performed to assess the cell tracking, engraftment and cardiac fibrosis in the infarct heart tissues. RESULTS: Echocardiography data showed a significantly improved cardiac function in the hiPSC-CMs and hMSCs groups, when compared to MI. Immunohistological studies showed expression of connexin-43, α-actinin and myosin heavy chain in engrafted hiPSC-CMs. Cardiac fibrosis was significantly decreased in hiPSC-CMs group when compared to hMSCs or MI groups. Overall, this study demonstrated improved cardiac function with decreased fibrosis with both hiPSC-CMs and hMSCs groups when compared with MI group.


Subject(s)
Induced Pluripotent Stem Cells/physiology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/physiology , Myocardial Infarction/pathology , Myocytes, Cardiac/physiology , Animals , Biomarkers/metabolism , Cells, Cultured , Disease Models, Animal , Echocardiography , Humans , Magnetic Resonance Imaging , Male , Myocardial Infarction/therapy , Rats, Nude
15.
J Pathol ; 231(3): 290-300, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24037780

ABSTRACT

'Oxidative stress' is a term defining states of elevated reactive oxygen species (ROS) levels. Normally, ROS control several physiological processes, such as host defence, biosynthesis of hormones, fertilization and cellular signalling. However, oxidative stress has been involved in different pathologies, including metabolic syndrome and numerous cardiovascular diseases. A major source of ROS involved in both metabolic syndrome and cardiovascular pathophysiology is the NADPH oxidase (NOX) family of enzymes. NOX is a multi-component enzyme complex that consists of membrane-bound cytochrome b-558, which is a heterodimer of gp91phox and p22phox, cytosolic regulatory subunits p47phox and p67phox, and the small GTP-binding protein Rac1. Rac1 plays many important biological functions in cells, but perhaps the most unique function of Rac1 is its ability to bind and activate the NOX complex. Furthermore, Rac1 has been reported to be a key regulator of oxidative stress through its co-regulatory effects on both nitric oxide (NO) synthase and NOX. Therefore, the main goal of this review is to give a brief outline about the important role of the Rac1-NOX axis in the pathophysiology of both metabolic syndrome and cardiovascular disease.


Subject(s)
Cardiovascular Diseases/enzymology , Metabolic Syndrome/enzymology , NADPH Oxidases/metabolism , Oxidative Stress , rac GTP-Binding Proteins/metabolism , Animals , Antioxidants/therapeutic use , Cardiovascular Agents/therapeutic use , Cardiovascular Diseases/drug therapy , Enzyme Inhibitors/therapeutic use , Humans , Metabolic Syndrome/drug therapy , NADPH Oxidases/antagonists & inhibitors , Oxidative Stress/drug effects , Signal Transduction , rac GTP-Binding Proteins/antagonists & inhibitors , rac1 GTP-Binding Protein/metabolism
16.
Oxid Med Cell Longev ; 2013: 279847, 2013.
Article in English | MEDLINE | ID: mdl-23766850

ABSTRACT

The neutrophil elastase inhibitor sivelestat (ONO-5046) possesses unknown mechanisms of cardioprotection when infused following global ischemia, even in the absence of neutrophils. Since myocardial ischemia-reperfusion injury is strongly associated with endothelial dysfunction and reactive oxygen species (ROS) generation during reperfusion, we have tested the hypothesis that infusion of sivelestat during postischemic low flow would preserve endothelial and contractile function and reduce infarct size through an ROS-mediated mechanism. Isolated male rat hearts, subjected to global ischemia of 25 minutes, were reperfused with low flow with or without sivelestat followed by a full flow reperfusion. Hearts treated with sivelestat showed a significant improvement of LV contractile function and a reduction in infarct size. Infusion of L-NAME (nonspecific blocker of endothelial nitric oxide synthase (eNOS)) along with sivelestat during reperfusion reversed the preservation of contractile function and infarct size. In vitro EPR spin trapping experiments showed that sivelestat treatment decreased superoxide adduct formation in bovine aortic endothelial cells (BAECs) subjected to hypoxia-reoxygenation. Similarly, dihydroethidine (DHE) staining showed decreased superoxide production in LV sections from sivelestat-treated hearts. Taken together, these results indicate that sivelestat infusion during postischemic low flow reduces infarct size and preserves vasoreactivity in association with decreased ROS formation and the preservation of nitric oxide.


Subject(s)
Coronary Circulation/drug effects , Glycine/analogs & derivatives , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/physiopathology , Sulfonamides/administration & dosage , Sulfonamides/therapeutic use , Animals , Aorta/pathology , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Cattle , Creatine Kinase/metabolism , Electron Spin Resonance Spectroscopy , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Glycine/administration & dosage , Glycine/pharmacology , Glycine/therapeutic use , Heart Ventricles/drug effects , Heart Ventricles/pathology , Heart Ventricles/physiopathology , In Vitro Techniques , Male , Models, Cardiovascular , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/enzymology , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Synthase Type III/antagonists & inhibitors , Nitric Oxide Synthase Type III/metabolism , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Sulfonamides/pharmacology , Superoxides/metabolism , Vasoconstriction/drug effects , Ventricular Function, Left/drug effects
17.
Resuscitation ; 84(1): 114-20, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22982155

ABSTRACT

BACKGROUND: The effect of hyperoxygenation at reperfusion, particularly in the setting of cardiac arrest, remains unclear. This issue was studied in a prolonged cardiac arrest model consisting of 25 min cardiac arrest in a rat resuscitated with cardiopulmonary bypass (CPB). The objective of this study was to determine the effect of hyperoxygenation following prolonged cardiac arrest resuscitation on mitochondrial and cardiac function. METHODS: Male Sprague-Dawley rats (400-450 g) were anesthetized with ketamine and xylazine and instrumented for closed chest cardiopulmonary bypass (CPB). Following a 25-min KCl-induced cardiac arrest, the animals were resuscitated by CPB with 100% oxygen. Three minutes after successful return of spontaneous circulation (ROSC), the animals received either normoxemic reperfusion (CPB with 40-50% oxygen) or hyperoxemic reperfusion (CPB with 100% oxygen) for 1 h. Post-resuscitation hemodynamics, cardiac function, mitochondrial function and immunostaining of 3-nitrotyrosine were compared between the two different treatment groups. RESULTS: At 1 h after ROSC, the hyperoxemic reperfusion group had a significant higher mean arterial pressure, less metabolic acidosis and better diastolic function than the normoxemic reperfusion group. Cardiac mitochondria from the hyperoxemic reperfusion group had a higher respiratory control ratio (RCR) and cardiac tissue showed less nitroxidative stress compared to the normoxemic reperfusion group. CONCLUSIONS: One hour of hyperoxemic reperfusion after 25 min of cardiac arrest in an in vivo CPB model resulted in significant short-term improvement in myocardial and mitochondrial function compared with 1h of normoxemic reperfusion. This myocardial response may differ from previously reported post-arrest hyperoxia mediated effects following shorter arrest times.


Subject(s)
Cardiopulmonary Bypass/methods , Heart Arrest/therapy , Hyperoxia , Oxygen Inhalation Therapy/methods , Analysis of Variance , Animals , Blood Gas Analysis , Heart Arrest/physiopathology , Hemodynamics , Immunohistochemistry , Male , Mitochondria, Heart/metabolism , Rats , Rats, Sprague-Dawley , Time Factors , Tyrosine/analogs & derivatives , Tyrosine/analysis
18.
Resuscitation ; 82(2): 222-7, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21144638

ABSTRACT

AIM OF STUDY: Isolated hearts used in the study of ischemia-reperfusion induced myocardial reactive oxygen species (ROS) have typically been perfused with crystalloid buffer. Limitations of crystalloid buffer which may exaggerate the production of ROS, include a requirement for higher oxygen tension and the absence of the intrinsic erythrocyte antioxidant defenses. Using a novel recirculating blood-perfused rat heart model, we measured H(2)O(2) concentration in the blood (as an indicator of ROS formation) and tissue glutathione concentration (an overall measure of oxidant stress) following ischemia and reperfusion. METHODS: Autologous blood was obtained and the heart isolated from pentobarbital-anesthetized male Sprague-Dawley rats and placed on a recirculating perfusion circuit with an in-line peristaltic pump and oxygenator. Blood temperature was maintained at 37°C. Hearts underwent normal perfusion for 120min (Sham Group, n=7) or 35min of normal perfusion, 25min of global ischemia, followed by 60min of reperfusion with baseline coronary blood flow levels (IR group, n=6). Oxygen delivery was compared with a group of buffer-perfused hearts perfused at 85mmHg. RESULTS: LV function in the sham group remained stable for 2h under normal physiologic oxygen conditions. The oxygen tension and coronary flow were significantly decreased but the myocardial oxygen delivery was significantly increased with blood perfusion compared with buffer perfusion. In the blood IR group, a significant increase in H(2)O(2) was seen early in reperfusion and a reduction in tissue GSH was noted at the end of reperfusion. CONCLUSION: This model offers significant physiologic advantages in the study of ischemia and reperfusion, particularly in terms of oxygen delivery, compared with the more commonly used acellular buffer-perfused isolated heart systems.


Subject(s)
Hydrogen Peroxide/blood , Myocardial Reperfusion , Oxidative Stress , Animals , Glutathione/metabolism , In Vitro Techniques , Male , Models, Animal , Rats , Rats, Sprague-Dawley
19.
Resuscitation ; 82 Suppl 2: S48-51, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22208178

ABSTRACT

INTRODUCTION: Rapid post-ischemic re-oxygenation is necessary to minimize ischemic injury, but itself can induce further reperfusion injury through the induction of reactive oxygen species. Utilization of oxygen within the cell primarily occurs in the mitochondria. The objective of this study was to determine heart mitochondrial function after 1 h of controlled arterial oxygenation following cardiac arrest and restoration of spontaneous circulation (ROSC). We hypothesized that arterial hyper-oxygenation following ROSC would result in greater impairment of heart mitochondrial function. METHODS: KCl cardiac arrest was induced in anesthetized rats. Following 6.5 min of cardiac arrest, animals were resuscitated with standard thumper CPR, ventilation and epinephrine. Following ROSC, all animals were ventilated for 60 min with either 100% O(2) or 40% O(2) titrated to achieve normoxia utilizing pulse oximetry. At the end of 1 h, heart mitochondria were isolated and mitochondrial respiratory function was measured. RESULTS: Post-ROSC arterial PaO2 was 280 ± 40 in the 100% O2 group and 105 ± 10 in the 40% O2 group. One hour after ROSC, heart mitochondrial state 3 respirations and respiration control ratio (state 3/4 respiration) were significantly reduced from baseline in animals ventilated with 100% O(2), but not with 40% O(2). CONCLUSION: Post-ROSC arterial hyperoxia after a short cardiac arrest exacerbates impaired mitochondrial function. The overall clinical significance of these findings is unclear and requires additional work to better understand the role of post-arrest hyperoxia on cardiac and mitochondrial function.


Subject(s)
Heart Arrest/complications , Hyperoxia/etiology , Mitochondria, Heart/physiology , Myocardial Reperfusion Injury/etiology , Oxygen/metabolism , Animals , Cardiopulmonary Resuscitation , Disease Models, Animal , Heart Arrest/physiopathology , Heart Arrest/therapy , Hyperoxia/metabolism , Hyperoxia/physiopathology , Male , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/physiopathology , Oxygen Consumption , Rats , Rats, Sprague-Dawley
20.
JAMA ; 303(21): 2165-71, 2010 Jun 02.
Article in English | MEDLINE | ID: mdl-20516417

ABSTRACT

CONTEXT: Laboratory investigations suggest that exposure to hyperoxia after resuscitation from cardiac arrest may worsen anoxic brain injury; however, clinical data are lacking. OBJECTIVE: To test the hypothesis that postresuscitation hyperoxia is associated with increased mortality. DESIGN, SETTING, AND PATIENTS: Multicenter cohort study using the Project IMPACT critical care database of intensive care units (ICUs) at 120 US hospitals between 2001 and 2005. Patient inclusion criteria were age older than 17 years, nontraumatic cardiac arrest, cardiopulmonary resuscitation within 24 hours prior to ICU arrival, and arterial blood gas analysis performed within 24 hours following ICU arrival. Patients were divided into 3 groups defined a priori based on PaO(2) on the first arterial blood gas values obtained in the ICU. Hyperoxia was defined as PaO(2) of 300 mm Hg or greater; hypoxia, PaO(2) of less than 60 mm Hg (or ratio of PaO(2) to fraction of inspired oxygen <300); and normoxia, not classified as hyperoxia or hypoxia. MAIN OUTCOME MEASURE: In-hospital mortality. RESULTS: Of 6326 patients, 1156 had hyperoxia (18%), 3999 had hypoxia (63%), and 1171 had normoxia (19%). The hyperoxia group had significantly higher in-hospital mortality (732/1156 [63%; 95% confidence interval {CI}, 60%-66%]) compared with the normoxia group (532/1171 [45%; 95% CI, 43%-48%]; proportion difference, 18% [95% CI, 14%-22%]) and the hypoxia group (2297/3999 [57%; 95% CI, 56%-59%]; proportion difference, 6% [95% CI, 3%-9%]). In a model controlling for potential confounders (eg, age, preadmission functional status, comorbid conditions, vital signs, and other physiological indices), hyperoxia exposure had an odds ratio for death of 1.8 (95% CI, 1.5-2.2). CONCLUSION: Among patients admitted to the ICU following resuscitation from cardiac arrest, arterial hyperoxia was independently associated with increased in-hospital mortality compared with either hypoxia or normoxia.


Subject(s)
Cardiopulmonary Resuscitation , Heart Arrest/mortality , Hospital Mortality , Hyperoxia/mortality , Aged , Aged, 80 and over , Cohort Studies , Databases, Factual , Female , Heart Arrest/therapy , Humans , Intensive Care Units/statistics & numerical data , Male , Middle Aged , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...