Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci Alliance ; 6(4)2023 04.
Article in English | MEDLINE | ID: mdl-36720500

ABSTRACT

FTSJ1 is a conserved human 2'-O-methyltransferase (Nm-MTase) that modifies several tRNAs at position 32 and the wobble position 34 in the anticodon loop. Its loss of function has been linked to X-linked intellectual disability (XLID), and more recently to cancers. However, the molecular mechanisms underlying these pathologies are currently unclear. Here, we report a novel FTSJ1 pathogenic variant from an X-linked intellectual disability patient. Using blood cells derived from this patient and other affected individuals carrying FTSJ1 mutations, we performed an unbiased and comprehensive RiboMethSeq analysis to map the ribose methylation on all human tRNAs and identify novel targets. In addition, we performed a transcriptome analysis in these cells and found that several genes previously associated with intellectual disability and cancers were deregulated. We also found changes in the miRNA population that suggest potential cross-regulation of some miRNAs with these key mRNA targets. Finally, we show that differentiation of FTSJ1-depleted human neural progenitor cells into neurons displays long and thin spine neurites compared with control cells. These defects are also observed in Drosophila and are associated with long-term memory deficits. Altogether, our study adds insight into FTSJ1 pathologies in humans and flies by the identification of novel FTSJ1 targets and the defect in neuron morphology.


Subject(s)
Intellectual Disability , Ribose , Humans , Methylation , Intellectual Disability/genetics , Methyltransferases/genetics , RNA, Transfer/genetics , RNA, Transfer/metabolism , Neurons/metabolism , Nuclear Proteins/genetics
2.
Genome Biol ; 23(1): 122, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35637459

ABSTRACT

DNA methylation plays vital roles in both prokaryotes and eukaryotes. There are three forms of DNA methylation in prokaryotes: N6-methyladenine (6mA), N4-methylcytosine (4mC), and 5-methylcytosine (5mC). Although many sequencing methods have been developed to sequence specific types of methylation, few technologies can be used for efficiently mapping multiple types of methylation. Here, we present NT-seq for mapping all three types of methylation simultaneously. NT-seq reliably detects all known methylation motifs in two bacterial genomes and can be used for identifying de novo methylation motifs. NT-seq provides a simple and efficient solution for detecting multiple types of DNA methylation.


Subject(s)
5-Methylcytosine , Epigenome , DNA Methylation , Genome, Bacterial , Genomics
3.
Front Genet ; 11: 518949, 2020.
Article in English | MEDLINE | ID: mdl-33193603

ABSTRACT

tRNA fragments (tRFs) are a class of small non-coding RNAs (sncRNAs) derived from tRNAs. tRFs are highly abundant in many cell types including stem cells and cancer cells, and are found in all domains of life. Beyond translation control, tRFs have several functions ranging from transposon silencing to cell proliferation control. However, the analysis of tRFs presents specific challenges and their biogenesis is not well understood. They are very heterogeneous and highly modified by numerous post-transcriptional modifications. Here we describe a bioinformatic pipeline (tRFs-Galaxy) to study tRFs populations and shed light onto tRNA fragments biogenesis in Drosophila melanogaster. Indeed, we used small RNAs Illumina sequencing datasets extracted from wild type and mutant ovaries affecting two different highly conserved steps of tRNA biogenesis: 5'pre-tRNA processing (RNase-P subunit Rpp30) and tRNA 2'-O-methylation (dTrm7_34 and dTrm7_32). Using our pipeline, we show how defects in tRNA biogenesis affect nuclear and mitochondrial tRFs populations and other small non-coding RNAs biogenesis, such as small nucleolar RNAs (snoRNAs). This tRF analysis workflow will advance the current understanding of tRFs biogenesis, which is crucial to better comprehend tRFs roles and their implication in human pathology.

4.
Nucleic Acids Res ; 48(4): 2050-2072, 2020 02 28.
Article in English | MEDLINE | ID: mdl-31943105

ABSTRACT

2'-O-Methylation (Nm) represents one of the most common RNA modifications. Nm affects RNA structure and function with crucial roles in various RNA-mediated processes ranging from RNA silencing, translation, self versus non-self recognition to viral defense mechanisms. Here, we identify two Nm methyltransferases (Nm-MTases) in Drosophila melanogaster (CG7009 and CG5220) as functional orthologs of yeast TRM7 and human FTSJ1. Genetic knockout studies together with MALDI-TOF mass spectrometry and RiboMethSeq mapping revealed that CG7009 is responsible for methylating the wobble position in tRNAPhe, tRNATrp and tRNALeu, while CG5220 methylates position C32 in the same tRNAs and also targets additional tRNAs. CG7009 or CG5220 mutant animals were viable and fertile but exhibited various phenotypes such as lifespan reduction, small RNA pathways dysfunction and increased sensitivity to RNA virus infections. Our results provide the first detailed characterization of two TRM7 family members in Drosophila and uncover a molecular link between enzymes catalyzing Nm at specific tRNAs and small RNA-induced gene silencing pathways.


Subject(s)
Drosophila melanogaster/genetics , Gene Silencing , RNA, Transfer/genetics , tRNA Methyltransferases/genetics , Animals , Gene Expression Regulation/genetics , Humans , Methylation , Methyltransferases/genetics , Nuclear Proteins/genetics , RNA Interference , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
5.
Article in English | MEDLINE | ID: mdl-29707539

ABSTRACT

Analogous to DNA methylation and histone modifications, RNA modifications represent a novel layer of regulation of gene expression. The dynamic nature and increasing number of RNA modifications offer new possibilities to rapidly alter gene expression upon specific environmental changes. Recent lines of evidence indicate that modified RNA molecules and associated complexes regulating and "reading" RNA modifications play key roles in the nervous system of several organisms, controlling both, its development and function. Mutations in several human genes that modify transfer RNA (tRNA) have been linked to neurological disorders, in particular to intellectual disability. Loss of RNA modifications alters the stability of tRNA, resulting in reduced translation efficiency and generation of tRNA fragments, which can interfere with neuronal functions. Modifications present on messenger RNAs (mRNAs) also play important roles during brain development. They contribute to neuronal growth and regeneration as well as to the local regulation of synaptic functions. Hence, potential combinatorial effects of RNA modifications on different classes of RNA may represent a novel code to dynamically fine tune gene expression during brain function. Here we discuss the recent findings demonstrating the impact of modified RNAs on neuronal processes and disorders.

SELECTION OF CITATIONS
SEARCH DETAIL
...